Chair objectives

Markov decision processes (MDPs) and their equivalents in reinforcement learning have been highly effective in solving large-scale problems over the past two decades. However, their success often depends on exceptional computational resources, limiting their applicability in contexts with restricted data volume or computing power.

Principal investigator

  • Urtzi AYESTA (Director of Research, CNRS, IRIT)

In contrast with this general trend, RL4SN aims to develop learning algorithms suitable for situations where data is scarce or computational power is limited, with a focus on stochastic networks. These are problems that are relevant from a practical perspective -for instance data centers provide the main infrastructure to support Internet applications and scientific computations-- but for which the RL techniques developed so far are not directly applicable.

Co-chair

  • Matthieu JONCKHEERE (Director of Research, CNRS, LAAS)

For instance, Stochastic networks may have sparse and rare non-zero rewards, not all policies are stable (in the sense of keeping the number of jobs bounded), optimal policies exhibiting clear structures in disjoint regions, and so-called index policies are known to perform very well. RL4SN is motivated by the potential for significant improvement that these properties offer to learning algorithms.

The main objective of RL4SN is thus to leverage the specific structures of the underlying MDPs of stochastic network problems to develop tailored learning algorithms.

Pour atteindre cet objectif ambitieux, RL4SN est organisé en trois tâches principales, chacune visant un objectif distinct : (i) améliorer l’exploration des algorithmes d’apprentissage dans les réseaux stochastiques, (ii) la création d’algorithmes d’apprentissage plus efficaces et frugaux, et (iii) le développement d’algorithmes d’ensembles pour apprendre efficacement les politiques d’indexation dans les réseaux stochastiques.

Ne manquez rien !

Inscrivez-vous pour recevoir l'actualité d'ANITI chaque mois.

Nous n’envoyons pas de messages indésirables !

en_GBEnglish