Chair objectives
This chair aims to analyze the transformations performed by model based and by data based diagnosis methods, deriving mutual benefits, and integrating them closely.
The first objective is to highlight and understand the correspondences that may exist between them and how they could synergize each other.
The second objective is to be able to formulate abstractions of data classifiers that we can map to symbolic or analytical models suitable for diagnosis reasoning, gaining better explainability and acceptability.
This chair is part of the ANITI “Collaborative AI” research and deals with diagnosis, including in the broadest sense monitoring, anomaly detection, fault isolation and identification, prognosis and health management.
These are tasks for which integrated human/AI systems show better performance.
Programs: Acceptable, certifiable & collaborative AI
Themes: Automated reasoning and decision making, explainability, data and anomaly
Chair holder: Louise Travé-Massuyès, DR CNRS, LAAS
Co-chairs:
Elodie Chanthery, Assistant professor, LAAS-CNRS, INSA, Toulouse
Xavier Pucel, Research engineer, ONERA, Toulouse
Nathalie Barbosa Roa, Data scientist and Big Data engineer, Vitesco Technologies, Toulouse
Chair holder : Louise Travé-Massuyès DR CNRS, LAAS
Co-chairs:
- Elodie Chanthery, Assistant professor, LAAS-CNRS, INSA, Toulouse
- Xavier Pucel, Research engineer, ONERA, Toulouse
- Nathalie Barbosa Roa, Data scientist and Big Data engineer, Vitesco Technologies, Toulouse
Senior collaborating researchers
- Audine Subias, Assistant professor, LAAS-CNRS, INSA, Toulouse
- Yannick Pencolé, Research fellow CNRS, LAAS-CNRS, Toulouse
- Marie-Véronique Le Lann, Professor, LAAS-CNRS, INSA, Toulouse
- Stéphanie Roussel, (ONERA, CERT, Toulouse)
- Pauline Ribot – Maître de conférence UT3
Doctorants
- Adrien Dorise, PhD student, LAAS-CNRS, CNES, Toulouse
- Charlotte Lacoquelle, PhD student, LAAS-CNRS, Vitesco Technologies, Toulouse
- Kevin Ducharlet, PhD student, LAAS-CNRS, Carl Levreau, Toulouse
- Le Toan Duong, PhD student, LAAS-CNRS, Vitesco Technologies, Toulouse
- Louis Goupil, PhD student, LAAS-CNRS, ATOS, Toulouse
- Edgar Sepulveda, PhD student, LAAS-CNRS, Feedgy, Toulouse
- Alexandre Gaffet, PhD student, LAAS-CNRS, Vitesco Technologies, Toulouse
- Amaury Vignolles, PhD student, LAAS-CNRS, Toulouse
Organised events
- Afterwork Data and Anomalies − April 2021
- Future Intelligence, Workshop . Diagnosis and maintenance: where and when? (L. Travé-Massuyès & E. Chanthery) − Mai 2021
Other highlights
- Toulouse is AI “Comprendre l’intelligence Artificielle, Apprendre et Entreprendre” − Sept 2019
- Nuit Européenne des chercheurs, Table Ronde “Intelligence Artificielle : comment (bien) préparer notre avenir” − Sept 2019
- SIANE Salon des partenaires de l’Industrie, Plateau télé “ANITI et Interactions avec l’Industrie” − Oct 2019
- Petit Illustré d’IA, “Le diagnostic, c’est quoi ?”, authors: Louise Travé-Massuyès and Yannick Pencolé, co-edité par le CNRS Occitanie Ouest and La Dépêche du midi − Dec 2020
- Conférence débat du Club Audiovisuel Numérique de Toulouse Métropole”: How does AI work? (L. Travé-Massuyès) − Mars 2020
- Pod-cast Investiga’Sciences: Industry and crafts: maintenance, same methods? (L. Travé-Massuyès) − Dec 2020
- Vidéo YouTube pour la série . Qui cherche cherche . – Louise Travé-Massuyès − Mars2021
- JEPEIA: an escape game on AI for high school students. Collaboration with Science Animation, Rectorat de Toulouse, UFTMiP, INSA, UPS
- Louise Travé-Massuyès is Associate Editor for Artificial Intelligence Journal
- [Dorise et al. 2021] Adrien Dorise, Louise Travé.-Massuyès, Corinne Alonso, Audine Subias, François Vacher, Leny Baczkowsky, Machine learning as an alternative to thresholding for space radiation fault detection, Radiation and its Effects on Components and Systems – RADECS 2021, Sept. 13 2021, Poster.
- [Ducharlet et al. 2020] Kévin Ducharlet, Louise Travé–Massuyès, Marie–V.ronique Le Lann, Youssef Miloudi. A Multi–phase Iterative Approach for Anomaly Detection and Its Agnostic Evaluation. Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices, pp.505–517, 2020, 978–3–030– 55788–1; 10.1007/978–3–030–55789–8_44;hal–03093657;
- [Duong et al. 2020] Le Toan Duong, Louise Trave–Massuyès, Audine Subias, Nathalie Barbosa Roa. Assessing product quality from the production process health status. 31st International Workshop on Principles of Diagnosis: DX–2020, Sep 2020, Nashville, Tennessee, United States; hal–03011772;
- [Gaffet et al. 2021] Alexandre Gaffet, Pauline Ribot, Elodie Chanthery, Nathalie Barbosa Roa, Christophe Merle. Data-Driven Capability-based Health Monitoring Method for Automative Manufacturing, PHM Society European Conference 2021
- [Gössler et al. 20219] Gregor Gössler, Thomas Mari, Yannick Pencol., Louise Travé–Massuyès. Towards Causal Explanations of Property Violations in Discrete Event Systems. DX’19 – 30th International Workshop on Principles of Diagnosis, Nov 2019, Klagenfurt, Austria. pp.1–8; hal–02369014;
- [Roussel et al. 2020] St.phanie Roussel, Xavier Pucel, Valentin Bouziat, Louise Trav.–Massuy.s. Model–Based Synthesis of Incremental and Correct Estimators for Discrete Event Systems. Twenty–Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence, Jul 2020, Yokohama, Japan. pp.1884–1890,;10.24963/ijcai.2020/261; hal–02982277;
- [Tran et al. 2021] Tuan Anh Tran, Carine Jauberthie, Louise Travel–Massuyès, Quoc Hung Lu. An Interval Kalman Filter enhanced by lowering the covariance matrix upper bound. International Journal of Applied Mathematics and Computer Science, University of Zielona Gora 2021; hal–03274850;
Know more
Louise Travé-Massuyès, virtuoso of automatic diagnosis
The researcher devotes her career to researching the causes of machine malfunctions. It develops automatic diagnostic models. A theme that is increasingly based on artificial intelligence techniques.