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Anomaly detection in data streams

Leveraging the Christoffel function for anomaly detection

3/16 March 23, 2022



This work

A hybrid AI anomaly detection method for data streams that:

I leverages the Christoffel function
I related to the Christoffel-Darboux kernel borrowed from the theory of approximation and

orthogonal polynomials
I advocated for data mining by J.-B. Lasserre and E. Pauwels (2019)

I benefits from a clean algebraic framework

I fulfils all data stream requirements

I needs little tuning

A collaboration between two ANITI chairs:

I Polynomial Optimization for Machine Learning and Data Analysis

(Jean-Bernard Lasserre)
I Synergistic Transformations in Model Based and Data Based Diagnosis

(Louise Travé-Massuyès)
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Capturing the shape of a cloud of data points
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Consider a cloud of data points

(x(i))i∈N ⊂ Rp

The red curve is the level set:

Lγ = {x : Qd(x) ≤ γ}, γ ∈ R+

of a certain polynomial Qd ∈R[x1, x2] of
degree 2d.

Notice that Lγ captures the shape of the

cloud.
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The Christoffel function

I Let µ be a Borel measure on a compact set Ω ⊂ Rp with nonempty interior,

I Form the vector vd(x) from a basis of p-variate polynomials of degree at most d:

vd(x) = (P1(x), . . . ,Ps(d)(x))T of size s(d) =

(
p+ d

p

)
.

� Q
µ
d (x) = vd(x)T Md(µ)

−1︸ ︷︷ ︸ vd(x) , ∀x ∈ Rp

Moment matrix of µ

The Christoffel function Λµ
d : Rp → R+ is defined by:

Λµ
d(x)−1 = Q

µ
d(x)

Λµ
d encodes properties of the underlying measure µ.
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Empirical measure

In our case

µn :=
1

n

n∑
i=1

δx(i)

is the EMPIRICAL measure associated with the cloud of data points (x(i))i≤n sampled

from an unknown measure µ on Ω.

� ... and quite remarkably

The level sets of Λµn

d (x)−1 match

the density variations of the cloud of

points (x(i))i≤n

→ Λµn

d (x)−1 is a good scoring

function for anomaly detection

In particular, the level set

{ x ∈ Rp : Λµn

d (x)−1 ≤
(
p+ d

p

)
}

identifies the support Ω of µ, even for

moderate values of d.
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Dealing with a data stream

Incremental update of Λµn

d (x)−1 with rank-one update of the inverse Md(µn)
−1

When a point ξ is added to the cloud of n

points, i.e.,

µn → 1

n+ 1
(nµn + δξ)

→ a new cloud with n+1 points

� The Sherman-Morrisson-Woodbury

formula allows for a simple RANK-ONE

UPDATE of the inverse Md(µn)
−1
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Crucial property: growth rate of the Christoffel function
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From scoring to binary anomaly prediction

The Dynamic Christoffel Growth Method: Dy-CG

µn : n first data points of the data stream.

∆ = (dj)1≤j≤k : sequence of k degrees in ascending order.

For every incoming x(n+ i)i≥1 of the data stream

I Identify an anomaly candidate with a reference score:

dref = dk = sup(∆) −→ Λ
µn+i−1

dk
(x(n+ i))−1

I Refute/confirm anomaly from the exponential growth of the scores:

d1 −→ Λ
µn+i−1

d1
(x(n+ i))−1

...
...

dk −→ Λ
µn+i−1

dk
(x(n+ i))−1
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Some comparisons

Isolation Forest, Simple Christoffel, Local Outlier Factor

Our method: Dy-CG
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Experiments on an industrial luggage conveyor data

Carl Berger-Levrault project - Multi-mode system, highly non linear data

Cifre thesis of Kevin Ducharlet

Data : conveyor speed and motor intensity labelled by modes
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Experiments on an industrial luggage conveyor data

Anomaly candidates from score for dref , refutal/confirmation from

exponential growth as a function of d
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Conclusion

I Dy-CG is a simple and easy-to-use method with little tuning that achieves excellent

results compared to other more tricky anomaly detection methods

I The Christoffel-based scoring function is directly issued from the moments of the

measure underlying the set of data points

I It leverages gthe rowth rate properties of the Christoffel function

I It nicely deals with data streams thanks to incremental update

I On going work:
I adding forgetting ability
I scaling up to high dimensions
I designing metrics to evaluate non supervised anomaly detection methods
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