01010101 0101 010101 0101

Improving anomaly detection in data streams with the Christoffel function

Louise Travé-Massuyès, Jean-Bernard Lasserre Kevin Ducharlet

March 25, 2022

Anomaly detection

Leveraging the Christoffel function for anomaly detection

Anomaly detection in data streams

Leveraging the Christoffel function for anomaly detection ANITI March 23, 2022

This work

A hybrid AI anomaly detection method for data streams that:

- leverages the Christoffel function
 - related to the Christoffel-Darboux kernel borrowed from the theory of approximation and orthogonal polynomials
 - advocated for data mining by J.-B. Lasserre and E. Pauwels (2019)
- benefits from a clean algebraic framework
- fulfils all data stream requirements
- needs little tuning

A hybrid AI anomaly detection method for data streams that:

- leverages the Christoffel function
 - related to the Christoffel-Darboux kernel borrowed from the theory of approximation and orthogonal polynomials
 - advocated for data mining by J.-B. Lasserre and E. Pauwels (2019)
- benefits from a clean algebraic framework
- fulfils all data stream requirements
- needs little tuning

A collaboration between two ANITI chairs:

- Polynomial Optimization for Machine Learning and Data Analysis (Jean-Bernard Lasserre)
- Synergistic Transformations in Model Based and Data Based Diagnosis (Louise Travé-Massuyès)

Capturing the shape of a cloud of data points

Consider a cloud of data points $(\mathbf{x}(i))_{i \in \mathbb{N}} \subset \mathbb{R}^{p}$

The red curve is the level set: $\mathcal{L}_{\gamma} = \{ \mathbf{x} : \mathbf{Q}_{\mathbf{d}}(\mathbf{x}) \leq \gamma \}, \gamma \in \mathbb{R}_{+}$

of a certain polynomial $Q_d \in \mathbb{R}[x_1, x_2]$ of degree 2d.

Notice that \mathcal{L}_{γ} captures the shape of the cloud.

The Christoffel function

- Let μ be a Borel measure on a compact set $\Omega \subset \mathbb{R}^{\rho}$ with nonempty interior,
- Form the vector $\mathbf{v}_d(\mathbf{x})$ from a basis of p-variate polynomials of degree at most d:

$$\mathbf{v}_{d}(\mathbf{x}) = (P_{1}(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^{T}$$
 of size $s(d) = \begin{pmatrix} p+d \\ p \end{pmatrix}$.

$$\boldsymbol{\mathbb{P}} \quad \boldsymbol{\mathsf{Q}}^{\boldsymbol{\mu}}_{\boldsymbol{\mathsf{d}}}(\mathbf{x}) \ = \ \mathbf{v}_{\boldsymbol{\mathsf{d}}}(\mathbf{x})^{\mathcal{T}} \underbrace{\mathbf{M}_{\boldsymbol{\mathsf{d}}}(\boldsymbol{\mu})^{-1}}_{\boldsymbol{\mathsf{d}}} \mathbf{v}_{\boldsymbol{\mathsf{d}}}(\mathbf{x}) \ , \quad \forall \mathbf{x} \in \mathbb{R}^{\boldsymbol{\boldsymbol{\rho}}}$$

Moment matrix of μ

The Christoffel function $\Lambda_d^{\mu} : \mathbb{R}^{\rho} \to \mathbb{R}_+$ is defined by: $\Lambda_d^{\mu}(\mathbf{x})^{-1} = \mathbf{Q}_d^{\mu}(\mathbf{x})$

 Λ_d^{μ} encodes properties of the underlying measure μ .

Leveraging the Christoffel function for anomaly detection

Empirical measure

In our case

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}(i)}$$

is the EMPIRICAL measure associated with the cloud of data points $(x(i))_{i \le n}$ sampled from an unknown measure μ on Ω .

🖙 ... and quite remarkably

The level sets of $\Lambda_d^{\mu_n}(\mathbf{x})^{-1}$ match the density variations of the cloud of points $(\mathbf{x}(i))_{i \leq n}$

 $\to \Lambda^{\mu_n}_{\it d}({\bf x})^{-1}$ is a good scoring function for anomaly detection

In particular, the level set

$$\{ \mathbf{x} \in \mathbb{R}^{\boldsymbol{p}} \, : \, \Lambda_{\boldsymbol{d}}^{\boldsymbol{\mu_{\boldsymbol{0}}}}(\mathbf{x})^{-1} \, \leq \, inom{\boldsymbol{p}}{\boldsymbol{p}} \}$$

identifies the support Ω of μ , even for moderate values of *d*.

Incremental update of $\Lambda_d^{\mu_n}(\mathbf{x})^{-1}$ with rank-one update of the inverse $\mathbf{M}_d(\mu_n)^{-1}$

When a point ξ is added to the cloud of *n* points, i.e.,

$$\mu_{\mathbf{n}} \rightarrow \frac{1}{\mathbf{n}+1} \left(\mathbf{n} \, \mu_{\mathbf{n}} + \delta_{\boldsymbol{\xi}} \right)$$

→ a new cloud with n+1 points The Sherman-Morrisson-Woodbury formula allows for a simple RANK-ONE UPDATE of the inverse $M_d(\mu_n)^{-1}$

Crucial property: growth rate of the Christoffel function

From scoring to binary anomaly prediction

The Dynamic Christoffel Growth Method: Dy-CG

 μ_n : *n* first data points of the data stream. $\Delta = (d_j)_{1 \le j \le k}$: sequence of *k* degrees in ascending order.

For every incoming $x(n + i)_{i \ge 1}$ of the data stream

Identify an anomaly candidate with a reference score:

$$d_{ref} = d_k = sup(\Delta) \longrightarrow \Lambda_{d_k}^{\mu_{n+i-1}}(x(n+i))^{-1}$$

Refute/confirm anomaly from the exponential growth of the scores:

$$\begin{aligned} d_1 &\longrightarrow & \Lambda_{d_1}^{\mu_{n+i-1}}(x(n+i))^{-1} \\ \vdots & & \vdots \\ d_k &\longrightarrow & \Lambda_{d_k}^{\mu_{n+i-1}}(x(n+i))^{-1} \end{aligned}$$

Leveraging the Christoffel function for anomaly detection

Isolation Forest, Simple Christoffel, Local Outlier Factor

LocalOutlierFactor (auto)

Our method: Dy-CG

Leveraging the Christoffel function for anomaly detection

Experiments on an industrial luggage conveyor data

Carl Berger-Levrault project - Multi-mode system, highly non linear data

Cifre thesis of Kevin Ducharlet

Data : conveyor speed and motor intensity labelled by modes

Leveraging the Christoffel function for anomaly detection

Experiments on an industrial luggage conveyor data

Anomaly candidates from score for d_{ref} , refutal/confirmation from exponential growth as a function of d

Leveraging the Christoffel function for anomaly detection

Experiments on an industrial luggage conveyor data

Anomaly candidates from score for d_{ref} , refutal/confirmation from exponential growth as a function of d

Leveraging the Christoffel function for anomaly detection

ANITI

- Dy-CG is a simple and easy-to-use method with little tuning that achieves excellent results compared to other more tricky anomaly detection methods
- The Christoffel-based scoring function is directly issued from the moments of the measure underlying the set of data points
- It leverages gthe rowth rate properties of the Christoffel function
- It nicely deals with data streams thanks to incremental update
- On going work:
 - adding forgetting ability
 - scaling up to high dimensions
 - designing metrics to evaluate non supervised anomaly detection methods

The Christoffel-Darboux Kernel for Data Analysis

Jean Bernard Lasserre, Edouard Pauwels and Mihai Putinar

Leveraging the Christoffel function for anomaly detection

