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Decision under uncertainty

⊲ Mathematical modelling

� The cost fx of a decision parametrized by x ∈ X

� depends on an uncertain variable b ∈ Ξ

⊲ Why do we want robustness in practical applications?

Difficult-to-predict environments

Biased, outdated, insufficient data

Attacks against complex models

In phase with regulations

� Ben-Tal, Ghaoui, Nemirovski. Robust optimization. Princeton university press, 2009.
� Kolter, Madry. Adversarial robustness - theory and practice. NeurIPS tutorial https://adversarial-ml-tutorial.org/, 2018. 1/15

https://adversarial-ml-tutorial.org/


Decision under uncertainty

⊲ Mathematical modelling

� The cost fx of a decision parametrized by x ∈ X

� depends on an uncertain variable b ∈ Ξ

⊲ Why do we want robustness in statistical learning?

� cost = model + loss fx on data point b ex. least squares fx (b = (a, b) ) = (〈x, a〉 − b)2

� the uncertainty variable’s distribution is known through samples b1, .., bN

� Robustness is desirable for

⊲ Generalization guarantees on the true distribution of the samples

⊲ Distribution shifts between training and application
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Popular approaches

⊲ The uncertain variable b lives in some uncertainty set U

min
x∈X

sup
b∈U

fx (b) (Worst-case robustness)

� U may be difficult to design

� pessimistic decisions (unlikely values of b)

⊲ The uncertain variable b is known though its empirical distribution P̂N = 1
N
∑N
i=1Xbi

min
x∈X

�
b∼P̂N

[fx (b)] (Sample Average Approximation)

� also called Empirical Risk Minimization in machine learning

� the empirical distribution P̂N may not be close to the true distribution of b in the target application
too few samples, biased collection, distribution shifts

� Ben-Tal and Nemirovski. Robust convex optimization. Mathematics of operations research, 1998.
� Shapiro, Dentcheva, and Ruszczynski. Lectures on stochastic programming: modeling and theory. SIAM, 2021.
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Distributionally Robust Optimization

⊲ The empirical distribution data provides partial information about the encountered distribution of b

� The uncertain variable’s distribution lives in a neighborhood U(P̂N ) of its empirical distribution

min
x∈X

sup
Q∈P(Ξ)
Q∈U(P̂N )

�b∼Q [fx (b)] (DRO)

� Inner sup taken over the set P(Ξ) of probability measures on Ξ infinite dimensional

� For some U(P̂N ), parametric (Gaussian) or not (q-divergences), this leads to finite-dimension
min-max problems efficient stochastic optimization methods

� Enforces model robustness at training

� Scarf. A min-max solution of an inventory problem. Studies in the mathematical theory of inventory and production, 1958.
� Rahimian and Mehrotra. Distributionally robust optimization: A review. arXiv 1908.05659, 2019.
� Delage and Ye. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Op. Res., 2010.
� Namkoong and Duchi. Stochastic gradient methods for distributionally robust optimization with f-divergences. NeurIPS, 2016.
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Wasserstein Distributionally Robust Optimization

⊲ The uncertain variable’s distribution lives in a Wasserstein neighborhood of its empirical distribution

min
x∈X

sup
Q∈P(Ξ)

Wc (P̂N ,Q)≤d

�b∼Q [fx (b)] (WDRO)

� For a cost function c : Ξ × Ξ → ℝ+, the Wasserstein distance between P̂N and Q is defined as

Wc (P̂N ,Q) = inf
{
�(b,Z )∼c [c (b, Z )] : c ∈ P(Ξ × Ξ), c1 = P̂N , c2 = Q

}
,

with c1 (resp. c2) the first (resp. second) marginal of the transport plan c .

� Natural metric to compare empirical and absolutely continuous distributions contrary to the

Kullback-Leibler divergence and strong generalization/concentration results

� Inner sup stays infinite dimensional and the constraint is itself linked to an optimization problem

� Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

� Kuhn, Esfahani, Nguyen, and Shafieezadeh-Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine
learning. In Operations Research & Management Science in the Age of Analytics, 2019.

� Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.
� Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022.
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⊲ WDRO is an appealing framework for distributional robustness but difficult to optimize

� Understand precisely the behavior of WDRO solutions

� Study its statistical guarantees

� Provide computationally tractable formulations for a large class of problems

Outline

Formulation & Examples
WDRO in practical ML



Wasserstein Distributionally Robust Optimization

♦ Formulation & Examples



Dual problem

⊲ Duality is at the core of modern WDRO

� Lagrangian duality + Sup over (conditional) measure realized by a Dirac at the sup

sup
Q∈P(Ξ)

Wc (P̂N ,Q)≤d

�b∼Q [fx (b)] = inf
_≥0

_d + �
b∼P̂N

[
sup
Z ∈Ξ

{fx (Z ) − _c (b, Z )}
]

(Duality)

⊲ Main improvement: this is a finite-dimensional problem and _ is 1D!

� If the sup is tractable, the Duality problem is solvable! and thusWDRO, but that's a big if

� The optimal worst-case distribution is supported on N + 1 atoms taken in
argmaxZ ∈Ξ

{
fx (Z ) − _★c (bi, Z )

}
for i = 1, ..,N

� Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

� Zhao and Guan. Data-driven risk-averse stochastic optimization with Wasserstein metric. Operations Research Letters, 2018.
� Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.
� Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022.
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Example I – the NewsVendor problem

⊲ A NewsVendor has to decide how many papers he will buy for tomorrow

� His buying price is k = 5 and his retail price is u = 7

� He has a collection of sales data b1, .., bN

� He wants to minimize its loss fx (b) = kx − umin(x, b) by optimizing the number x ∈ ℝ+ of
newspaper bought, facing the uncertain demand of tomorrow b ∈ ℝ+

⊲ Taking a robust decision

� Worst-case robustness leads to x★WCR = 0 since b = 0 is possible

� Sample Average Approximation leads to x★SAA > 0 by minimizing the average loss over the past

� What about WDRO?
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Example I – the NewsVendor problem

⊲ A NewsVendor has to decide how many papers he will buy for tomorrow

� His buying price is k = 5 and his retail price is u = 7

� He has a collection of sales data b1, .., bN in ℝ+ = Ξ

� He wants to minimize its loss fx (b) = kx − umin(x, b) by optimizing the number x ∈ ℝ+ of
newspaper bought, facing the uncertain demand of tomorrow b ∈ ℝ+

min
x≥0

inf
_≥0

_d + 1
N

N∑
i=1

sup
Z ∈Ξ

{
kx − umin(x, Z ) − _ |bi − Z |

}
⊲ We can solve Duality with c (b, Z ) = |b − Z |

� If _★ = 0, the sup is attained at Z★i = 0 for all bi , leading to x★ = 0 → d too large, worst-case

� If _★ ≥ u, the sup is attained at Z★i = bi for each bi → SAA problem linear cost/function cancel out

� _ ∈ (0, u) cannot be optimal gradient either positive or negative

⊲ WDRO leads to x★WCR = 0 or x★SAA depending on d!
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Example II – Logistic regression

⊲ Standard classification problem

� Labeled data b1, .., bN of the form bi = (xi, yi) ∈ ℝd × {−1, +1} = Ξ

� We minimize the loss fx (b = (x ′, y′)) = log(1 + exp(−y′〈x ′, x〉)) by fitting separator x ∈ ℝd

min
x∈ℝd

inf
_≥0

_d + 1
N

N∑
i=1

sup
Z=(z,v ) ∈Ξ

{
log(1 + exp(−yi 〈xi, x〉)) − _

(
‖xi − z‖ + ^1yi≠v

)}
⊲ We can solve Duality by disciplined convex programming

� for this, c (b = (x, y), Z = (z, v)) = ‖x − z‖ + ^1y≠v if ^ = +∞, (WDRO) is ERM regularized by d ‖x ‖∗

min
x,_,s

_d + 1
N

N∑
i=1

si

s.t. log(1 + exp(−yi 〈xi, x 〉) ) ≤ si ∀i
log(1 + exp(yi 〈xi, x 〉) ) − ^_ ≤ si ∀i
‖x ‖∗ ≤ _

-1
+1
shifted +1 -> -1
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Example III – Portfolio selection

⊲ Optimize a portfolio x ∈ {y ∈ ℝd
+ :

∑d
i=1 y [i] = 1} over m assets subject to uncertain yearly returns

� Return data b1, .., bN in ℝd = Ξ

� We minimize a risk-averse loss fx (b, g) = −〈x, b〉 + [g + [
U max(−〈x, b〉 − g ; 0) with [ ≥ 0 is the risk

aversion and U ∈ (0, 1] is the risk level   risk �[−〈x, b〉] + [ CVaRU [−〈x, b〉]

min
x∈{ℝd

+:
∑d

i=1 x [i ]=1}
min
g∈ℝ

inf
_≥0

_d + 1
N

N∑
i=1

sup
Z ∈Ξ

{
−〈x, Z 〉 + [g + [

U
max(−〈x, Z 〉 − g ; 0) − _‖bi − Z ‖

}
⊲ We can again solve Duality by disciplined convex programming for c (b, Z ) = ‖b − Z ‖

min
x,g,_,s

_d + 1
N

N∑
i=1

si

s.t. [g − 〈x, bi 〉 ≤ si ∀i
[ (1 − 1/U )g − (1 + [/U ) 〈x, bi 〉 ≤ si ∀i

‖x ‖∗ ≤ _/[,
d∑
i=1

x [i ] = 1, x ≥ 0

Portfolio as a function of d Source: Esfahani & Kuhn, 2018 10/15



Example III – Portfolio selection

⊲ Optimize a portfolio x ∈ {y ∈ ℝd
+ :

∑d
i=1 y [i] = 1} over m assets subject to uncertain yearly returns

� Return data b1, .., bN in ℝd = Ξ

� We minimize a risk-averse loss fx (b, g) = −〈x, b〉 + [g + [
U max(−〈x, b〉 − g ; 0) with [ ≥ 0 is the risk

aversion and U ∈ (0, 1] is the risk level   risk �[−〈x, b〉] + [ CVaRU [−〈x, b〉]

min
x∈{ℝd

+:
∑d

i=1 x [i ]=1}
min
g∈ℝ

inf
_≥0

_d + 1
N

N∑
i=1

sup
Z ∈Ξ

{
−〈x, Z 〉 + [g + [

U
max(−〈x, Z 〉 − g ; 0) − _‖bi − Z ‖

}
⊲ We can again solve Duality by disciplined convex programming for c (b, Z ) = ‖b − Z ‖

⊲ Recovers that optimality of equally weighted port-
folio under high ambiguity

� Esfahani and Kuhn. Data-driven distributionally robust optimiza-
tion using the Wasserstein metric: Performance guarantees and
tractable reformulations. Mathematical Programming, 2018.

� Pflug, Pichler, Wozabal. The 1/N investment strategy is optimal under
high model ambiguity. J. Bank. Financ., 2012.

� Rockafellar and Uryasev. Optimization of conditional value-at-risk.
J. Risk, 2000. Portfolio as a function of d Source: Esfahani & Kuhn, 2018 10/15



Statistical properties of WDRO: illustration on Example III - Portfolio selection

⊲ Sample 200 training datasets of size N = {30, 300, 3000} from the same distribution

� for each of them, solve WDRO to get optimal point x̂★ and value R̂d (fx̂★)

⊲ Reliability = pc. of datasets s.t. the WDRO value is greater than the loss at the WDRO optimal point:
estimated by taking N = 30000 target �b∼P [fx̂★ (b)] ≤ R̂d (fx̂★) computed

Out-of-sample performance �b∼P
[
fx̂★ (b )

]
and reliability as a function of d Source: Esfahani & Kuhn, 2018

⊲ To get a fixed reliability, no need to scale as 1
N 1/10 ,

1√
N

seems enough!
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Conclusion on WDRO

⊲ An appealing modeling framework…

� Actually models robustness in distribution

� Natural metric without prior

⊲ …with some caveats

� The (dual) problem is only tractable for specific combinations of objectives and cost functions

� Discrete worst cases despite encompassing all kind of distributions

� Can suffer from a bang-bang effect between worst-cases and SAA

⊲ WDRO models control the true risk with high probability

� Radius d should be intuitively taken proportional to 1/
√
N

� Uniform in the model fx
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Wasserstein Distributionally Robust Optimization

♦ WDRO in practical ML



Entropic regularization

⊲ We draw inspiration from entropic transport and regularize by entropy wrt. a reference coupling c0

� In optimal transport, entropic regularization with KL(c | P ⊗Q) c0 is the product of marginals

� In WDRO, the second marginal is not fixed but optimized to get our adversarial distribution

� We choose c0 (db, dZ ) ∝ P̂N (db)e−
‖b−Z ‖p

2p−1f 1Z ∈Ξ dZ

R̂d (fx ) = inf
_≥0

_d + �
b∼P̂N

[
sup
Z ∈Ξ

{
fx (Z ) − _‖b − Z ‖p

}]
(WDRO)

R̂Y
d (fx ) = inf

_≥0
_d + Y �

b∼P̂N

[
log

(
�Z∼c0 ( · |b )

[
e
fx (Z )−_‖b−Z ‖p

Y

] )]
(Y-WDRO)

Theorem (Azizian, I., Malick’22)
If Ξ ⊂ ℝd is compact, convex, with nonempty interior and fx is Lipschitz continuous, then as Y goes to 0

0 ≤ R̂d (fx ) − R̂Y
d (fx ) ≤ O

(
Yd log

(
1
Y

))
� Genevay, Chizat, Bach, Cuturi, and Peyré. Sample complexity of sinkhorn divergences. AIStats, 2019. 13/15



Solving generic WDRO problems

⊲ Leverage the entropic regularization

min
x∈X

inf
_≥0

_d + Y
1
N

N∑
i=1

[
log

(
�Z∼c0 ( · |bi )

[
e
fx (Z )−_‖bi−Z ‖2

Y

] )]
� Gradients in x and _ are available

1
N

N∑
i=1


�Z∼c0 ( · |bi )∇x fx (Z )e

fx (Z )−_‖bi−Z ‖2
Y

�Z∼c0 ( · |bi ) e
fx (Z )−_‖bi−Z ‖2

Y

 and d − 1
N

N∑
i=1


�Z∼c0 ( · |bi ) ‖bi − Z ‖2e

fx (Z )−_‖bi−Z ‖2
Y

�Z∼c0 ( · |bi ) e
fx (Z )−_‖bi−Z ‖2

Y


⊲ Crude approach: sample some points from c0 (·|bi) ∝ e

‖bi−Z ‖2
2f 1Z ∈Ξ and minimize the sampled loss

� This is a biased approximation with poor performance in practice except for d = 1

⊲ Better approach: sample the expectation at each iteration by (Metropolis-adjusted) Langevin

� “Robustifies” but unstable behavior of _

⊲ Implemented approach: additionally use importance sampling towards ∇bi fx (bi)

� Much more stable, when initialized with the ERM solution
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skwdro

⊲ https://github.com/iutzeler/skwdro + pip/conda

⊲ Two interfaces (see the Documentation)

� scikit-learn models

15/15
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skwdro

⊲ https://github.com/iutzeler/skwdro + pip/conda

⊲ Two interfaces (see the Documentation)

� wrapper over pytorch modules

15/15

https://github.com/iutzeler/skwdro
https://skwdro.readthedocs.io/en/latest/index.html

	Distributionally Robust Optimization
	Wasserstein Distributionally Robust Optimization
	Formulation & Examples
	WDRO in practical ML


