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Decision under uncertainty

> Mathematical modelling
The cost fy of a decision parametrized by x € X
depends on an uncertain variable £ € =

> Why do we want robustness in practical applications?

Difficult-to-predict environments Attacks agalnnst complex m?dels

pig (99%)

airliner (96%)

In phase with regulations

ETHICS GUIDELINES
FOR TRUSTWORTHY Al

o Ben-Tal, Ghaoui, Nemirovski. Robust optimization. Princeton university press, 2009.

o Kolter, Madry. Adversarial robustness - theory and practice. NeurIPS tutorial https://adversarial-ml-tutorial.org/, 2018. L


https://adversarial-ml-tutorial.org/

Decision under uncertainty

> Mathematical modelling
The cost fy of a decision parametrized by x € X
depends on an uncertain variable ¢ € =
> Why do we want robustness in statistical learning?
cost = model + loss f; on data point £ ex. least squares f; (¢ = (a,b)) = ({x,a) — b)*
the uncertainty variable’s distribution is known through samples &1, .., &y
Robustness is desirable for
> Generalization guarantees on the true distribution of the samples

> Distribution shifts between training and application
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Popular approaches

> The uncertain variable & lives in some uncertainty set U

min sup fy (&) (Worst-case robustness)
xeX ey

U may be difficult to design

pessimistic decisions (unlikely values of &)

> The uncertain variable £ is known though its empirical distribution Py = % Zjiil(%i

min E P [ (O] (Sample Average Approximation)
xeX STEN

also called Empirical Risk Minimization in machine learning
the empirical distribution Py may not be close to the true distribution of  in the target application

too few samples, biased collection, distribution shifts

o Ben-Tal and Nemirovski. Robust convex optimization. Mathematics of operations research, 1998.
o Shapiro, Dentcheva, and Ruszczynski. Lectures on stochastic programming: modeling and theory. SIAM, 2021.
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Distributionally Robust Optimization

> The empirical distribution data provides partial information about the encountered distribution of ¢

The uncertain variable’s distribution lives in a neighborhood U(Py) of its empirical distribution

min  sup Eg. €3] (DRO)
xeX QeP (%) §Q[fx

QeU(Py)
Inner sup taken over the set £ (Z) of probability measures on E infinite dimensional

For some U (Py), parametric (Gaussian) or not (¢-divergences), this leads to finite-dimension

min-max problems efficient stochastic optimization methods

Enforces model robustness at training

Scarf. A min-max solution of an inventory problem. Studies in the mathematical theory of inventory and production, 1958.

Rahimian and Mehrotra. Distributionally robust optimization: A review. arXiv 1908.05659, 2019.

Delage and Ye. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Op. Res., 2010.
Namkoong and Duchi. Stochastic gradient methods for distributionally robust optimization with f-divergences. NeurIPS, 2016.

o 0 O O
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Wasserstein Distributionally Robust Optimization

> The uncertain variable’s distribution lives in a Wasserstein neighborhood of its empirical distribution

min sup  Egglfx(8)] (WDRO)
xeX  Qep(=) co
Wc(PN’Q)Sp

For a cost function ¢ : 2 X & — R, the Wasserstein distance between f’N and Q is defined as
W (P, Q) = inf {Bgg)~n [c(E0)] i m e P(EXE),my = Py, 72 =Q},
with 71 (resp. m2) the first (resp. second) marginal of the transport plan 7.

Natural metric to compare empirical and absolutely continuous distributions contrary to the
Kullback-Leibler divergence and strong generalization/concentration results

Inner sup stays infinite dimensional and the constraint is itself linked to an optimization problem

o Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

o Kuhn, Esfahani, Nguyen, and Shafieezadeh-Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine
learning. In Operations Research & Management Science in the Age of Analytics, 2019.

o Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.

o Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022.
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> WDRO is an appealing framework for distributional robustness but difficult to optimize
Understand precisely the behavior of WDRO solutions
Study its statistical guarantees

Provide computationally tractable formulations for a large class of problems

Outline

Formulation & Examples
WDRO in practical ML



Wasserstein Distributionally Robust Optimization

Formulation & Examples



Dual problem

> Duality is at the core of modern WDRO

Lagrangian duality + Sup over (conditional) measure realized by a Dirac at the sup

oip  Eeol(@] = infdp + Epp |up {f(0) = Ae(&. O} (Duality)

Wc (f)NsQ) <p
> Main improvement: this is a finite-dimensional problem and A is 1D!

If the sup is tractable, the Duality problem is solvable! and thus WDRO, but that's a big if

The optimal worst-case distribution is supported on N + 1 atoms taken in
arg maxy ez {A() = 2*c(& O} fori=1,.,N

o Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

¢ Zhao and Guan. Data-driven risk-averse stochastic optimization with Wasserstein metric. Operations Research Letters, 2018.

o Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.

o Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022.

6/15



Example I — the NewsVendor problem

> A NewsVendor has to decide how many papers he will buy for tomorrow
His buying price is k = 5 and his retail price is u = 7
He has a collection of sales data &1, .., &N

He wants to minimize its loss fi(£) = kx — umin(x, &) by optimizing the number x € Ry of
newspaper bought, facing the uncertain demand of tomorrow ¢ € R,

> Taking a robust decision

*
Worst-case robustness leads to XWeR

Sample Average Approximation leads to xJ, , > 0 by minimizing the average loss over the past

= 0 since & = 0 is possible

What about WDRO?
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Example I — the NewsVendor problem

> A NewsVendor has to decide how many papers he will buy for tomorrow
His buying price is k = 5 and his retail price is u = 7
He has a collection of sales data &3, ..,y in Ry = 2

He wants to minimize its loss fi(£) = kx — umin(x, &) by optimizing the number x € Ry of
newspaper bought, facing the uncertain demand of tomorrow ¢ € Ry

N
. 1 ]
e 3 e e - 0|

> We can solve Duality with ¢(&,¢) = | = (]
If A* = 0, the sup is attained at {}* = 0 for all &;, leading to x* = 0 — p too large, worst-case
If A* > u, the sup is attained at gvl* = ¢; for each &; — SAA problem linear cost/function cancel out
A € (0, u) cannot be optimal gradient either positive or negative

> WDRO leads to x*

Wer = 0or x7, , depending on p!

8/15



Example II - Logistic regression

> Standard classification problem
Labeled data &, .., £y of the form &; = (xj, y;) € RY x {-1,+1} =&
We minimize the loss fi (€ = (x’, ) = log(1 + exp(—y'{x’, x})) by fitting separator x € R?
1 N
min inf Ap + —

i fuf g+ > sup _ {log(1+exp-yitoux)) = A (s =2l + x|
X =

i1 {=(z,v)€E

> We can solve Duality by disciplined convex programming

for this, ¢(£ = (x,¥),{ = (2,v)) = [|x — z|| + k1 y%y if k = +o0, (WDRO) is ERM regularized by p||x|

e -1
® +1
o shifted +1 -> -1
1 N . o %o °
q ) . . o A g
i A9 i D T
A5 i=1 ° ..‘\. .‘.“.. ) °
L[] L] 'l ° ° a .
st. log(1+exp(—yi(xi,x))) <s Vi 9 05 A% o LIL
. B e 3, g8
log(1+exp(yi{x;,x))) —kA < 5 Vi . ":" L P
° [ o% o
lIxlle < A “‘_ A
5 ) o o o °
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Example III — Portfolio selection

> Optimize a portfolio x € {y € ]R‘i : Z?zl yli] = 1} over m assets subject to uncertain yearly returns
Return data &y, .., &y in Ri=%
We minimize a risk-averse loss fx(& 1) = —(x, &) + nt + g max(—(x, &) — r;0) with > 0 is the risk

aversion and a € (0, 1] is the risk level ~» risk E[—(x, £)| + n CVaRy[—(x, &)]

N

. . 1 Ui
min min inf Ap + — sup {—(x, ) +nt + — max(—(x,{) — 1;0) —/1||§-—§||}
xe{R%:Y4 x[i]=1} T€R 120 N ;‘ l€E o l

> We can again solve Duality by disciplined convex programming for ¢(&,{) = ||£ - (||

1

N

. 1 0.8
min Ap+ — Z Si
x,7,A,8 N = 06

st. T —(x, &) <5 Vi

0.4/
d

Ixll. < A/m, Y x[i] =1,x >0

i=1

0
10° 102 107! 10°
Portfolio as a function of p Source: Esfahani & Kuhn, 2018 10/15



Example III — Portfolio selection

> Optimize a portfolio x € eRY : Z?'_ i] = 1} over m assets subject to uncertain yearly returns
P P y + i=1Y ] yearly

Return data &y, .., &y in R =%

We minimize a risk-averse loss fx(& 1) = —(x, &) + nt + g max(—(x, &) — r;0) with > 0 is the risk

aversion and a € (0, 1] is the risk level ~» risk E[—(x, £)| + n CVaRy[—(x, &)]

N

. . 1 Ui
min min inf Ap + — sup {—(x, ) +nt + — max(—(x,{) — 1;0) —/1||§-—§||}
xe{R%:Y4 x[i]=1} T€R 120 N ;‘ l€E o l

> We can again solve Duality by disciplined convex programming for ¢(&,{) = ||£ - (||
> Recovers that optimality of equally weighted port- .
folio under high ambiguity 0.8

o Esfahani and Kuhn. Data-driven distributionally robust optimiza- 0.6

tion using the Wasserstein metric: Performance guarantees and 04 /
tractable reformulations. Mathematical Programming, 2018.
o Pflug, Pichler, Wozabal. The I/N investment strategy is optimal under 0.2 -

high model ambiguity. J. Bank. Financ., 2012.
o Rockafellar and Uryasev. Optimization of conditional value-at-risk.
J. Risk, 2000.

Portfolio as a function of p Source: Esfahani & Kuhn, 2018 10/15



Statistical properties of WDRO: illustration on Example III - Portfolio selection

> Sample 200 training datasets of size N = {30, 300,3000} from the same distribution
for each of them, solve WDRO to get optimal point * and value R o (fir)

> Reliability = pc. of datasets s.t. the WDRO value is greater than the loss at the WDRO optimal point:
estimated by taking N = 30000 target ]ngp U;c* &] < ﬁp (fzx) computed

-0.9 ps 1

formance
~

i 6 = A =
; E 5 E
/ 43 g e
/ = 5 = g &
; T n
/ 2 S ar
S =} =
R 0o © a4 o © a4
10* 10° 102 107! 10 103 102 107 10 10° 10 107
Out-of-sample performance E¢.p [fx* (5)] and reliability as a function of p Source: Esfahani & Kuhn, 2018

—L seems enough!

> To get a fixed reliability, no need to scale as ﬁ, T
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Conclusion on WDRO

> An appealing modeling framework...
Actually models robustness in distribution
Natural metric without prior
> ...with some caveats
The (dual) problem is only tractable for specific combinations of objectives and cost functions
Discrete worst cases despite encompassing all kind of distributions
Can suffer from a bang-bang effect between worst-cases and SAA
> WDRO models control the true risk with high probability
Radius p should be intuitively taken proportional to 1/VN

Uniform in the model f;
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Conclusion on WDRO

> An appealing modeling framework...
Actually models robustness in distribution
Natural metric without prior

> ...with some caveats

The (dual) problem is only tractable for specific combinations of objectives and cost
functions

Discrete worst cases despite encompassing all kind of distributions

Can suffer from a bang-bang effect between worst-cases and SAA
> WDRO models control the true risk with high probability

Radius p should be intuitively taken proportional to 1/VN

Uniform in the model fx
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Wasserstein Distributionally Robust Optimization

WDRO in practical ML



Entropic regularization

> We draw inspiration from entropic transport and regularize by entropy wrt. a reference coupling ¢
In optimal transport, entropic regularization with KL(7 | P ® Q) 7, is the product of marginals

In WDRO, the second marginal is not fixed but optimized to get our adversarial distribution

. _lg=zip
We choose mo(d¢,d{) oc Py(dé)e 27'o Tyezdd

Ro(fo) =inf 2p + By p up {£© —lllf—éllp}} (WDRO)
= . fx (&) =AIE=EIP
R, (f) =)1Lr§) Ap+e ]E§~f’N [log (ng,,o(_m [e G ])] (e-WDRO)

Theorem (Azizian, 1., Malick’22)
IfiEle RY is compact, convex, with nonempty interior and fy is Lipschitz continuous, then as € goes to 0

0< ﬁp(fx) —ﬁ;(fx) <0 (Edlog (%))

o Genevay, Chizat, Bach, Cuturi, and Peyré. Sample complexity of sinkhorn divergences. AlStats, 2019. 13/15



Solving generic WDRO problems

> Leverage the entropic regularization
N 12
1 F(@-ME=LI
ininf Ap+¢ — log (E¢y, (-1 e
miy inf Ap fN;[Og( {omo(-18) [e m
Gradients in x and A are available

(@) =Alg =112 S -ANg=Z11?
ii Egmy(1g) Vafc (e~ . _ii Epomiz) G- gl%e
N & fx (@ =AlIE =112 and.p N £ fe (D) =AlE =112
= Eromiegne ¢ =1 Eromiegne ¢

l1&-¢1?

> Crude approach: sample some points from 7o (:|¢;) « e” 20~ 1 ¢z and minimize the sampled loss
This is a biased approximation with poor performance in practice except for d = 1

> Better approach: sample the expectation at each iteration by (Metropolis-adjusted) Langevin
“Robustifies” but unstable behavior of A

> Implemented approach: additionally use importance sampling towards V, fi (&)

Much more stable, when initialized with the ERM solution
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skwdro

> https://github.com/iutzeler /skwdro + pip/conda
> Two interfaces (see the Documentation)

scikit-learn models

from sklearn.linear_model import LinearRegression # sklearn’s regressor
from skwdro.linear_models import LinearRegression as RobustLinearRegression

X,y = ... # Training data
# === ERM ===
7 1lin = LinearRegression()

lin.fit(X,y)

10 # === DRO ===
11 rob_lin = RobustLinearRegression(rho=0.1) # WDRO with radius 0.1
12 Tob_lin.fit (X,y)
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https://github.com/iutzeler/skwdro
https://skwdro.readthedocs.io/en/latest/index.html

skwdro

> https://github.com/iutzeler /skwdro + pip/conda
> Two interfaces (see the Documentation)

wrapper over pytorch modules

import torch as pt
> from skwdro.wrap_problem import dualize_primal_loss

model = nn.Linear(...) # Inference model is a pytorch Module
loss_fn = pt.nn.MSELoss(reduction=’none’) # quadratic loss function

7 wdro_loss = dualize_primal_loss(
loss_fn, model,
) rho = pt.tensor(0.1), # Robustness radius
X, y # Provide some "warmup" samples
) # Replaces the loss of the model by the dual WDRO loss
wdro_loss.get_initial_guess_at_dual(X, y) # Choice of a starting lambda

optimizer = torch.optim.XXX # Optimizer of your choice
for _ in range(...): # training loop
for X, y in train_batches:
7 optimizer.zero_grad()

# === ERM === Here is what you would do usualy to optimize the loss:
# loss = loss_fn(model(X), y).mean() # Standard loss on batch

# loss.backward ()

# optimizer.step() # Standard optimization step

# === DRO === Here is the new version:
2 rob_loss = wdro_loss(X, y).mean() # Robust loss

rob_loss. backward () 15/15
7 optimizer.step() # Robust optimization step


https://github.com/iutzeler/skwdro
https://skwdro.readthedocs.io/en/latest/index.html
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