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Motivation • Trust in artificial intelligence

• Pressing issues from public + academics + industry

• Mathematicalmodeling of trustworthiness...

∘ What lifecycle changes can one be resilient to?

∘ How to evaluate expected performance?

Interplay between robust stochastic optimization andmachine learning

• ... fitting the operational constraints of AI

∘ Provably robust but not too pessimistic

∘ Efficient open-source implementation

Bridge the theoretical vision of reliability with the public’s practical expectations 1



Context • Handling uncertainty in statistical learning

• Training amodel for reliable performance

∘ Can only use collected samples from some unknown training distribution

∘ Target a low error (eg. squared, logistic loss) on average for future data

• Classical quantities optimized

∘
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Context • Handling uncertainty in statistical learning

• Training amodel for reliable performance

∘ Can only use collected samples from some unknown training distribution

∘ Target a low error (eg. squared, logistic loss) on average for future data

• Classical quantities optimized

∘ Empirical error over the data→ overly optimistic about future + replicates biases
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Context • Handling uncertainty in statistical learning

• Training amodel for reliable performance

∘ Can only use collected samples from some unknown training distribution

∘ Target a low error (eg. squared, logistic loss) on average for future data

• Classical quantities optimized

∘ Worst error possible→ pessimistic + data agnostic
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Context • Handling uncertainty in statistical learning

• Training amodel for reliable performance

∘ Can only use collected samples from some unknown training distribution

∘ Target a low error (eg. squared, logistic loss) on average for future data

• A sweet spot in between: Distributional robustness

∘ Infer a distributionwith a similar performance as future→ data-driven + trustworthy
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State of the art • Wasserstein Distributionally RobustOptimization (WDRO)

• The perfect tool for statistical reliability

∘ Generalization of the performance to unseen samples

∘ Resilience to shifts between training and future data

∘ Future performance is controlled
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Our recentworks • Tractable regularizationswith statistical guarantees

• Limitations of classicalWDRO

∘ Numerically out-of-reach in most situations Eg. Linear regression Neural nets

∘ Modeling gapswith reality Eg. High dimension Text, images

• We proposed a differentiable approximation ofWasserstein distributional robustness

∘ Built on a entropic regularization of theWDRO problem

W. Azizian, F. Iutzeler, J. Malick : Regularization forWasserstein Distributionally Robust

Optimization, ESAIM: Control, Optimisation, and Calculus of Variations, 2023. ArXiv 2205.08826

∘ Benefiting from generalization and shift-resilience guarantees

W. Azizian, F. Iutzeler, J. Malick : Exact Generalization Guarantees for (Regularized)Wasserstein

Distributionally RobustModels, NeurIPS 2023. ArXiv 2305.17076

∘ Implemented in a Python librarywith both sklearn estimators and torchwrappers

github.com/iutzeler/skwdro + pip / conda

F. Vincent, W. Azizian, F. Iutzeler, J. Malick : skwdro: a library forWasserstein distributionally robust

machine learning, preprint, 2024. ArXiv 2410.21231
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