Reliable Machine Learning with Distributional Robustness

Franck IUTZELER

Univ. Toulouse III - Institut de Mathématiques & chair TRIAL

ANITI Days '24

• Pressing issues from public + academics + industry

- Mathematical modeling of trustworthiness...
 - What lifecycle changes can one be resilient to?
 - How to evaluate expected performance?

Interplay between robust stochastic optimization and machine learning

- ... fitting the operational constraints of AI
 - Provably robust but not too pessimistic
 - Efficient open-source implementation

Bridge the theoretical vision of reliability with the public's practical expectations

- Training a model for reliable performance
 - Can only use collected samples from some unknown training distribution
 - Target a low error (eg. squared, logistic loss) on average for future data

Context Handling uncertainty in statistical learning

- Training a model for reliable performance
 - Can only use collected samples from some unknown training distribution
 - Target a low error (eg. squared, logistic loss) on average for future data
- Classical quantities optimized
 - Empirical error over the data → overly optimistic about future + replicates biases

Context Handling uncertainty in statistical learning

- Training a model for reliable performance
 - Can only use collected samples from some unknown training distribution
 - Target a low error (eg. squared, logistic loss) on average for future data
- Classical quantities optimized
 - Worst error possible \rightarrow pessimistic + data agnostic

Context Handling uncertainty in statistical learning

- Training a model for reliable performance
 - Can only use collected samples from some unknown training distribution
 - Target a low error (eg. squared, logistic loss) on average for future data
- A sweet spot in between: Distributional robustness
 - Infer a distribution with a similar performance as future \rightarrow data-driven + trustworthy

State of the art • Wasserstein Distributionally Robust Optimization (WDRO)

- The perfect tool for statistical reliability
 - Generalization of the performance to unseen samples
 - Resilience to shifts between training and future data
 - Future performance is controlled

- Limitations of classical WDRO
 - Numerically out-of-reach in most situations Eg. Linear regression
 - Modeling gaps with reality Eg. High dimension ⁽²⁾ Text, images ⁽³⁾
- We proposed a differentiable approximation of Wasserstein distributional robustness
 - Built on a entropic regularization of the WDRO problem
 W. Azizian, F. lutzeler, J. Malick : Regularization for Wasserstein Distributionally Robust
 Optimization, ESAIM: Control, Optimisation, and Calculus of Variations, 2023. ArXiv 2205.08826
 - Benefiting from generalization and shift-resilience guarantees
 W. Azizian, F. lutzeler, J. Malick : Exact Generalization Guarantees for (Regularized) Wasserstein
 Distributionally Robust Models, NeurIPS 2023. ArXiv 2305.17076
 - Implemented in a Python library with both sklearn estimators and torch wrappers github.com/iutzeler/skwdro + pip / conda
 F. Vincent, W. Azizian, F. Iutzeler, J. Malick : skwdro: a library for Wasserstein distributionally robust machine learning, preprint, 2024. ArXiv 2410.21231
 Franck IUTZELER www.iutzeler.org

Neural nets 😫