ANITI

Towards instance-dependent approximation guarantees for Lipschitz approximators, application to Scientific ML.

P. Novello, IRT Saint Exupery C. Gauchy, CEA M. Dalery, Laboratoire de Mathématiques de Besançon M. Peyron, CERFACS & EVIDEN S. Saha, Indian Statistical Institute

© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI. Confidential and proprietary document

Challenges of SciML

Scientific Machine Learning is thriving [2] …

- o Extends traditional surrogate modeling and function approximation to larger scale problems (mesh data) [5,7].
- \circ Encompasses new techniques like Physics informed learning, neural operators ([5,6]., this workshop) to refine the quality of the approximation and foster practitioner's trust in those models.

…but surrogate models and numerical schemes are not considered equals

- o Such models are data driven and lack guarantees as seen classical numerical schemes
- o Some workaround to leverage ML without affecting the guarantees:
	- \triangleright ML-driven preconditioning [9], Mesh initialization [13],...

Still, the performances of next gen surrogate models can be so good as is…

…Couldn't we provide strict **approximation guarantees for SciML models**?

We approximated a function $f: \mathcal{X} \in \mathbb{R}^d \to \mathbb{R}$ using a neural network g and a set of learning points $(X_1, Y_1 = f(X_1))$, ..., $(X_n, Y_n = f(X_n))$

Now, can we provide approximation guarantees after the training using q and $(X_1, Y_1 = f(X_1)), \ldots, (X_n, Y_n = f(X_n))$ only?

By finding bounds on

$$
J_g = ||f - g||_{\infty} = \max_{x \in \mathcal{X}} |f(x) - g_{\theta}(x)|
$$

In the following, we try to bound the norm $||f - g||_{\infty}$, with a bound \bar{J}_g . **To that end, we will leverage the properties of Lipschitz neural networks**

4

A function f is said Lipschitz continuous, of constant K_f if :

$$
\forall x, y \in \mathbb{R}^d, |f(x) - f(y)| \le K_f \times ||x - y||
$$

A neural network g is said K_g -Lipschitz when it satisfies the above property.

Its rate of change is bounded by K_q

Motivation: Error bound in 1D

Take the difference between maximum variation of f and g on each subdivision:

$$
J_g \le \max_{i \in \{1, \dots, n\}} \frac{1}{2} \left(K_g + K_f \right) \|X_i - X_{i-1}\| + \frac{f(X_i) - g(X_i)}{2} \le \sup_{\text{example}} \frac{1}{2} \left(K_g + K_f \right) + \frac{1}{2} \left(K_g + K_f \right) +
$$

Motivation: Error bound in 2D (and beyond)

Bound in 2D ($d = 2$ **):**

• Consider n^2 learning points $\{X_{i,j}\}_{i,j\in\{1,...n\}^n}$ at the center of a grid with cells of edge size h .

In the k-th cell of center $X_{i,j}$:

$$
J_g^k \le |f(X_{i,j}) - g(X_{i,j})| + \frac{1}{\sqrt{2}} (K_f + K_g)h = \bar{J}_g^k
$$

Bound in ND $(d = N)$:

 \overline{k}

In the k -th cell of center X_p : $J_g^k \le |f(X_p) - g(X_p)| + \frac{\sqrt{N}}{2} (K_f + K_g) h = \bar{J}_g^k$

 \bar{J}^k_g

Then, $J_g \leq \max_{l}$

Breaking free from grids

Main problem: Learning points are rarely structured as a grid

What about learning in the context of Scientific ML?

We control the design of experiment so we could build it as a grid **Very constraining:**

- The DOE should be defined in advance and we could not add points sequentially
- \circ Grids suffer from the curse of dimensionality, the number of f evaluations would grow exponentially with d
- Monte Carlo is convenient

Aim of this work: find ways to build upper bounds for J_g when $(X_1, Y_1 = f(X_1))$, ..., $(X_n, Y_n = f(X_n))$ is not structured as a grid

Outline

 \triangleright Introduction

Ø **Error bound with Voronoï diagrams**

- \triangleright Bounding with certified Deterministic Optimistic Optimization
- Ø Conclusion & Takeaway

Definition of a Voronoï diagram (and some notations)

A Voronoï diagram \mathcal{V}^d is built on a set of points $\mathbf{X} =$ $\{X_1, \ldots, X_n\}, X_i \in \mathcal{X} \subset \mathbb{R}^d.$

Each point is called a site*,* and the diagram is defined by its cells $\{\mathcal{V}^d(X_1), ..., \mathcal{V}^d(X_n)\}\)$ themselves defined by

$$
\mathcal{V}^d(X_i) = \{x \in \mathcal{X} | \forall j \in \{1, ..., n\}, ||x - X_i|| \le ||x - X_j||\}
$$

If $x \in \mathcal{V}^d(X_i)$, then X_i is the nearest neighbor of x

We have that $\mathcal{X} = \bigcup_{i \in \{1, \dots, n\}} \mathcal{V}^d(X_i)$, so to obtain \overline{J}_{g} , it is enough finding $\bar{J}^{\bar{\iota}}_g$, an upper bound for

$$
J_g^i = \max_{x \in \mathcal{V}^d(X_i)} |f(x) - g(x)|
$$

Error bound using Voronoï diagram

Let
$$
N: x \to arg \min_{X_i \in \mathbf{X}} ||x - X_i||
$$
 (nearest neighbor map)
\nThen by the Lipschitz property of g and f, we have that $\forall x \in \mathcal{X}$,
\n
$$
|f(x) - g(x)| \le (K_f + K_g)||x - N(x)|| +
$$
\nLemma 1\n
$$
|f(N(x)) - g(N(x))|
$$
\n
$$
= \frac{G \text{cos well with } |f(N(x)) - g(N(x))|}{\text{cos well with } |f(N(x)) - g(N(x))|}
$$
\n
$$
= \frac{G \text{cos well with } |f(N(x)) - g(N(x))|}{\text{cos will with } |f(N(x)) - g(N(x))| + (K_f + K_g)r(N)
$$
\n
$$
= \frac{G \text{cos well with } |f(N(x)) - g(N(x))| + (K_f + K_g)r(N)
$$
\n
$$
= \frac{G \text{cos will with } |f(N(x)) - g(N(x))| + (K_f + K_g)r(N)
$$

$$
\triangleright
$$
 All we need is to compute $r(X_i)$

Experiments on toy functions

Sinus function

 $f: x, y \rightarrow \sin(x) \times \sin(y)$

10000 training points

Experiments on toy functions

 $f: x, y \rightarrow \left| \sin(x) \cos(y) \exp \left(\left| 1 - \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \right| \right) \right|$ π **Holder table function**

10000 training points

Complexity of Voronoï diagrams

Upper bound of L_{∞} error with computation time for Sinus function (left) and Holder table function (right) 3.500 10.00 300 - Exec. time Upper bound $-\nabla$ -₩- Exec. time Upper bound High sample estimation High sample estimation 250 3.000 250 8.00 2.500 200 200 6.00 \sum_{ω}^{5} 2.000 -150 $\frac{60}{90}$ -150 $\frac{60}{60}$
 $\frac{60}{60}$ error 1.500 4.00 100 100 1.000 50 -50 2.00 0.500 0.087 $\overline{\mathbf{0}}$ 0.42 $\overline{\mathbf{0}}$ 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} $10²$ 10^{5} $10²$ 10^{3} $10⁴$ 10^{6} $10⁷$ Best upper bound: 0.098 Best upper bound: 0.53 High sample estimation: 0.42High sample estimation: 0.087

Problem: Voronoï diagram's complexity is exponential**…**

... what about higher d and n ?

Learning heat diffusion

Diffusion in 2D:

$$
\frac{\partial u}{\partial t} = D \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
$$

- \triangleright We simulate heat diffusion on a homogeneous surface, with 4 Dirichlet boundary conditions and observe the field at convergence.
- \triangleright The final heat field depends on the boundary conditions, but not on the initial state nor the diffusivity.

Design of experiment:

- **►** Sample $n = 5000$ boundary conditions $\{(a_i, b_i, c_i, d_i)\}_{i \in \{1,\dots,n\}}$ uniformly on $[0,1]^4$.
- ≻ Conduct *n* simulations on a $p \times p$ grid ($p = 32$), yielding a temperature field $\{T_{jk}\}_{j,k \in \{1,...,p\}^2}$.

Training dataset:

A subset of
$$
n \times p \times p/10 = 512,000
$$
 points $\{(a_i, b_i, c_i, d_i, x_j, x_k), T_{j,k}\}_{i \in \{1,\dots,n\}, j,k \in \{1,\dots,p\}^2}$

Neural implicit representation approach!

DEEL

Approximation results

Lipschitz network, MSE= 6.3×10^{-5}

Standard fully connected, MSE= 4.1×10^{-5}

How to handle unknown K_f ?

Two ways:

1. Empirical estimation of Lipschitz constant using:

$$
\widehat{K_f} = \max_{i \in \{1, \dots, n\}} \left(\max_{X \in \mathcal{N}_k(X_i)} \frac{|f(X) - f(X_i)|}{\|X - X_i\|} \right)
$$

Where $\mathcal{N}_k(X_i)$ is the set of the k-th nearest neighbors of X_i .

- 2. Hypotheses of f :
	- \circ In [8], the authors compute the Lipschitz constant of f when it is a Gaussian Process interpolating the data.
	- o Could apply to polynomial regression
	- \circ We might find the Lipschitz constant by studying the physics [4]

DEEL

Error bound

Lipschitz network, MSE= 6.3×10^{-5}

\triangleright Maximum empirical L_1 error: 0. 17

Voronoï diagram with a subset of 20000 points. Takes ≈ 3000 seconds $(exponential$ complexity...)

 \triangleright Error bound: 84!! Not very appealing...

► We have to find workarounds to use all the $n \times p \times p = 5,120,000$ points

Outline

- \triangleright Introduction
- \triangleright Error bound with Voronoï diagrams
- Ø **Bounding with certified Deterministic Optimistic Optimization**
- \triangleright Conclusion & Takeaway

DEEL

Let's consider $X = \{X_1, ..., X_n\}$ uniformly distributed on $[0,1]^d$.

We have that, $\forall x, i \in [0,1]^d \times \{1, ..., n\},$

$$
|f(x) - g(x)| \le (K_f + K_g) ||x - X_i|| + |f(X_i) - g(X_i)|
$$

We can do better because **we can evaluate** $g(x)$!

 $\forall x, i \in [0,1]^d \times \{1, ..., n\},$

$$
|f(x) - g(x)| \le K_f \|x - X_i\| + |f(X_i) - g(x)|
$$

Lemma 2

Now, consider a grid of p^d cells with centers ${c_1, ..., c_{p} \}$

DEEL

 $\forall k \in \{1, \ldots, p^2\},\$ Now, consider a grid of p^d cells $\left\{ \mathcal{C}_1, \dots, \mathcal{C}_{p^d} \right\}$ with centers $\{c_1, ..., c_{p^d}\}$

$$
|f(c_k) - g(c_k)| \le K_f ||c_k - X_i|| +
$$

$$
|g(c_k) - f(X_i)|
$$

DEEL

Now, consider a grid of p^d cells $\left\{ \mathcal{C}_1, ..., \mathcal{C}_{p^d} \right\}$ with centers $\{c_1, ..., c_{p^d}\}$ $\forall k \in \{1, \ldots, p^2\},$

$$
|f(c_k) - g(c_k)| \le K_f ||c_k - X_i|| +
$$

$$
|g(c_k) - f(X_i)|
$$

DEEL

Now, consider a grid of p^d cells $\left\{ \mathcal{C}_1, ..., \mathcal{C}_{p^d} \right\}$ with centers $\{c_1, ..., c_{p^d}\}$ $\forall k \in \{1, \ldots, p^2\},\$

$$
|f(c_k) - g(c_k)| \le K_f ||c_k - X_i|| +
$$

$$
|g(c_k) - f(X_i)|
$$

DEEL

Now, consider a grid of p^d cells $\left\{ \mathcal{C}_1, \dots, \mathcal{C}_{p^d} \right\}$ with centers $\{c_1, ..., c_{p^d}\}$ $\forall k \in \{1, \ldots, p^2\},\$

$$
|f(c_k) - g(c_k)| \le K_f ||c_k - X_i|| +
$$

$$
|g(c_k) - f(X_i)|
$$

Since we know that $\forall x \in C_k$,

$$
|f(x) - g(x)| \le |f(c_k) - g(c_k)| + \frac{\sqrt{d}}{2p}(K_f + K_g)
$$

DEEL

Now, consider a grid of p^d cells $\{C_1, ..., C_{p^d}\}$ with centers $\{c_1, ..., c_{p^d}\}$ $\forall k \in \{1, ..., p^2\},\$

$$
|f(c_k) - g(c_k)| \le K_f ||c_k - X_i|| +
$$

$$
|g(c_k) - f(X_i)|
$$

We have that $\forall x \in C_k$, $|f(x) - g(x)| \leq K_f ||c_k - X_i|| +$ $g(c_k) - f(X_i)$ + $\frac{\sqrt{d}}{2p}(K_f+K_g)$

DEEL

Now, consider a grid of p^d cells $\left\{ \mathcal{C}_1, \dots, \mathcal{C}_{p^d} \right\}$ with centers $\{c_1, ..., c_{p^d}\}$ $\forall k \in \{1, \ldots, p^2\},\;$

$$
|f(c_k) - g(c_k)| \le K_f ||c_k - X_i|| +
$$

$$
|g(c_k) - f(X_i)|
$$

We have that
$$
\forall x \in C_k
$$
,
\n
$$
|f(x) - g(x)| \le \min_{i \in \{1, \dots, n\}} \frac{K_f ||c_k - X_i|| + \frac{K_f ||c_k - X_i|| + \frac{\sqrt{d}}{2p} (K_f + K_g)}
$$

 $\forall x \in C_k$,

$$
|f(x) - g(x)| \le K_f ||c_k - X_i|| + |g(c_k) - f(X_i)| + \frac{\sqrt{d}}{2p} (K_f + K_g)
$$

Requirements calls to a Requirements
nearest neighbor of $g(c_k)$, which can be
algorithm to find
 $N(c_k)$ efficiently

Computational efforts needed:

- o Nearest neighbor algorithm
	- Ø Many very efficient libraries (immensely cheaper than Voronoï diagram complexity not exponential)
	- \triangleright The bound is still valid with approximate nearest neighbors
- \circ Evaluation of g
	- \triangleright Very efficient on GPU

DEEL

 $|f(x) - g(x)| \leq \min$ $i \in$ {1,...,n $K_f ||c_k - X_i|| +$ $g(c_k) - f(X_i)$ $+\frac{\sqrt{d}}{4p}(K_f+K_g)$ low high

Certified Deterministic Optimistic Optimization [14] Split cells until convergence towards

 $\min_{i \in \{1, \dots, n\}} K_f ||x - X_i|| + |g(x) - f(X_i)|$

With a known certificate ϵ

Certified Deterministic Optimistic Optimization [14] Finds x^* and ϵ^* such that $\forall x \in \mathcal{X}$

min $i \in$ {1,...,n $|K_f||x - X_i|| + |g(x) - f(X_i)| \leq \epsilon^* + \min_{i \in [1, 1]}$ $i \in$ {1,...,n $K_f ||x^* - X_i|| + |g(x^*) - f(X_i)|$

Hence, $\forall x \in \mathcal{X}$

$$
|f(x) - g(x)| \le \epsilon^* + \min_{i \in \{1, \dots, n\}} K_f ||x^* - X_i|| + |g(x^*) - f(X_i)|
$$

New bound !

Results on Heat Diffusion

Can be very long, but can stop anytime to obtain a bound

Beyond SciML: Braking Distance Estimation

Braking Distance Estimation for plane landing

In that case, fast convergence

The bound is not far from the worst error obtained in the training dataset with a Lipschitz neural network. => It is practically useful!

We built algorithms to compute strict upper bound for $||f - g||_{\infty}$, where g is a Lipschitz neural net approximating for f . Can be very tight for low dimension.

- Ø Voronoï based, **very costly** because of Voronoï diagram's **exponential complexity**.
- Ø Can be made **way cheaper** by leveraging the **mesh structure** of some data dimensions.
- Ø Can be **relaxed** by casting bounding into an optimization problem and using **C-DOO.**

Perspectives:

- o The method is applicable to **any K-lip model** like Gaussian Processes [8] or Polynomial interpolation.
- o The algorithms make it possible **to locate the error**, which could be useful for **active learning** (we could provably reduce the error bound) or **sequential optimization**.
- o Goes well with the **Neural Implicit Representation** approach (including PINNs).
- o **Hybridization** between ML and classical solvers
- The work will continue in ANITI's integrative programs:

DEEL(2) $A|45AVE$ **Preprint version: available soon. Reach me out to**

[Check out "Accelerating hypersonic reentry simulations using de](https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uaJK95oAAAAJ&citation_for_view=uaJK95oAAAAJ:Tyk-4Ss8FVUC)ep learning-based hybridization (with quarantees)" Novello et al, Journal of Computational Physics!

know more and stay up to date.

References

- 1. Anil, Cem, James Lucas, and Roger Grosse. "Sorting out Lipschitz Function Approximation."ICML, June 11, 2019. [https://doi.org/10.48550/arXiv.1811.053](https://doi.org/10.48550/arXiv.1811.05381)81.
- 2. Baker, Nathan, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar, et al. "Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence," February 20[19. https://doi.org/10.2172/14787](https://doi.org/10.2172/1478744)44.
- 3. Béthune, Louis, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, and Alberto González-Sanz. "Pay Attention to Your Loss: Understanding Misconceptions about 1-Lipschitz Neural Networks."NeurIPS, October 17, 20[22. https://doi.org/10.48550/arXiv.2104.050](https://doi.org/10.48550/arXiv.2104.05097)97.
- 4. Bunin, Gene A., and Grégory François. "Lipschitz Constants in Experimental Optimization." arXiv, January 14, 2017. [https://doi.org/10.48550/arXiv.1603.078](https://doi.org/10.48550/arXiv.1603.07847)47.
- 5. Goswami, Somdatta, Aniruddha Bora, Yue Yu, and George Em Karniadakis. "Physics-Informed Deep Neural Operator Networks." arXiv, July 17, 2022. [http://arxiv.org/abs/2207.0574](http://arxiv.org/abs/2207.05748)8.
- 6. Karniadakis, George, Yannis Kevrekidis, Lu Lu, Paris Perdikaris, SifanWang, and Liu Yang. "Physics-Informed Machine Learning," May 24, 2021, 1–19. [https://doi.org/10.1038/s42254-021-00314](https://doi.org/10.1038/s42254-021-00314-5)-5.
- 7. Kovachki, Nikola, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. "Neural Operator: Learning Maps Between Function Spaces." arXiv, April 7, 20[23. http://arxiv.org/abs/2108.084](http://arxiv.org/abs/2108.08481)81.
- 8. Lederer, Armin, Jonas Umlauft, and Sandra Hirche. "Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control."NeurIPS, December 19, 20[19. http://arxiv.org/abs/1906.013](http://arxiv.org/abs/1906.01376)76.
- 9. Li, Yichen, Peter Yichen Chen, Tao Du, and Wojciech Matusik. "Learning Preconditioners for Conjugate Gradient PDE Solvers." In *Proceedings of the 40th International Conference on Machine Learning*, 19425–39. PMLR, 20[23. https://proceedings.mlr.press/v202/li23e.htm](https://proceedings.mlr.press/v202/li23e.html)l.
- 10. Serrurier, Mathieu, Franck Mamalet, Thomas Fel, Louis Béthune, and Thibaut Boissin. "On the Explainable Properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective."NeurIPS, June 22, 20[23. https://doi.org/10.48550/arXiv.2206.068](https://doi.org/10.48550/arXiv.2206.06854)54.
- 11. Serrurier, Mathieu, Franck Mamalet, Alberto Gonzalez-Sanz, Thibaut Boissin, Jean-Michel Loubes, and Eustasio del Barrio. "Achieving Robustness in Classification Using Optimal Transport with Hinge Regularization." In *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 505–14. Nashville, TN, USA: IEEE, 20[21. https://doi.org/10.1109/CVPR46437.2021.000](https://doi.org/10.1109/CVPR46437.2021.00057)57.
- 12. Wang, Ruigang, and Ian Manchester. "Direct Parameterization of Lipschitz-Bounded Deep Networks." In *Proceedings of the 40th International Conference on Machine Learning*, 36093–110. PMLR, 20[23. https://proceedings.mlr.press/v202/wang23v.htm](https://proceedings.mlr.press/v202/wang23v.html)l.
- **33** 13. Novello, Paul, Gaël Poëtte, David Lugato, Simon Peluchon, and Pietro Marco Congedo. "Accelerating Hypersonic Reentry Simulations Using Deep Learning-Based Hybridization (with Guarantees)." Journal of Computational Physics, September 30, 20[22. https://doi.org/10.48550/arXiv.2209.134](https://doi.org/10.48550/arXiv.2209.13434)34.