

Towards instance-dependent approximation guarantees for Lipschitz approximators, application to Scientific ML.

P. Novello, IRT Saint Exupery

C. Gauchy, CEA M. Dalery, Laboratoire de Mathématiques de Besançon M. Peyron, CERFACS & EVIDEN S. Saha, Indian Statistical Institute

© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI. Confidential and proprietary document

Challenges of SciML

Scientific Machine Learning is thriving [2] ...

- Extends traditional surrogate modeling and function approximation to larger scale problems (mesh data) [5,7].
- Encompasses new techniques like Physics informed learning, neural operators ([5,6]., this workshop) to refine the quality of the approximation and foster practitioner's trust in those models.

...but surrogate models and numerical schemes are not considered equals

- Such models are data driven and lack guarantees as seen classical numerical schemes
- Some workaround to leverage ML without affecting the guarantees:
 - ML-driven preconditioning [9], Mesh initialization [13],...

Still, the performances of next gen surrogate models can be so good as is...

...Couldn't we provide strict **approximation guarantees for SciML models**?

We approximated a function $f: \mathcal{X} \in \mathbb{R}^d \to \mathbb{R}$ using a neural network g and a set of learning points $(X_1, Y_1 = f(X_1)), \dots, (X_n, Y_n = f(X_n))$

Now, can we provide approximation guarantees after the training using g and $(X_1, Y_1 = f(X_1)), \dots, (X_n, Y_n = f(X_n))$ only?

By finding bounds on

$$J_g = \|f - g\|_{\infty} = \max_{x \in \mathcal{X}} |f(x) - g_{\theta}(x)|$$

In the following, we try to bound the norm $||f - g||_{\infty}$, with a bound \overline{J}_g . To that end, we will leverage the properties of Lipschitz neural networks

A function f is said Lipschitz continuous, of constant K_f if :

$$\forall x, y \in \mathbb{R}^d, |f(x) - f(y)| \le K_f \times ||x - y||$$

A neural network g is said K_g -Lipschitz when it satisfies the above property.

Its rate of change is bounded by K_g

Motivation: Error bound in 1D

Take the difference between maximum variation of f and g on each subdivision:

$$J_g \le \max_{i \in \{1, \dots, n\}} \frac{1}{2} \left(K_g + K_f \right) \|X_i - X_{i-1}\| + \|f(X_i) - g(X_i)\| = 0 \text{ in this}$$
example

Motivation: Error bound in 2D (and beyond)

Bound in 2D (d = 2):

• Consider n^2 learning points $\{X_{i,j}\}_{i,j\in\{1,\dots,n\}^{\wedge}2}$ at the center of a grid with cells of edge size h.

In the k-th cell of center $X_{i,j}$:

$$J_g^k \le \left| f\left(X_{i,j}\right) - g\left(X_{i,j}\right) \right| + \frac{1}{\sqrt{2}} \left(K_f + K_g\right) h = \overline{J}_g^k$$

Bound in ND (d = N):

In the k-th cell of center X_p : $J_g^k \le |f(X_p) - g(X_p)| + \frac{\sqrt{N}}{2}(K_f + K_g)h = \overline{J}_g^k$

Then, $J_g \leq \max_k \overline{J}_g^k$

Main problem: Learning points are rarely structured as a grid

What about learning in the context of Scientific ML?

We control the design of experiment so we could build it as a grid Very constraining:

- The DOE should be defined in advance and we could not add points sequentially
- Grids suffer from the curse of dimensionality, the number of f evaluations would grow exponentially with d
- o Monte Carlo is convenient

Aim of this work: find ways to build upper bounds for J_g when $(X_1, Y_1 = f(X_1)), \dots, (X_n, Y_n = f(X_n))$ is not structured as a grid

Outline

Introduction

Error bound with Voronoï diagrams

- > Bounding with certified Deterministic Optimistic Optimization
- Conclusion & Takeaway

Definition of a Voronoï diagram (and some notations)

A Voronoï diagram \mathcal{V}^d is built on a set of points $\mathbf{X} = \{X_1, \dots, X_n\}, X_i \in \mathcal{X} \subset \mathbb{R}^d$.

Each point is called a site, and the diagram is defined by its cells $\{\mathcal{V}^{d}(X_{1}), ..., \mathcal{V}^{d}(X_{n})\}$ themselves defined by

$$\mathcal{V}^d(X_i) = \{x \in \mathcal{X} | \forall j \in \{1, \dots, n\}, \|x - X_i\| \le \|x - X_j\|\}$$

If $x \in \mathcal{V}^d(X_i)$, then X_i is the nearest neighbor of x

We have that $\mathcal{X} = \bigcup_{i \in \{1,...,n\}} \mathcal{V}^d(X_i)$, so to obtain \overline{J}_g , it is enough finding \overline{J}_q^i , an upper bound for

$$J_g^i = \max_{x \in \mathcal{V}^d(X_i)} |f(x) - g(x)|$$

Error bound using Voronoï diagram

Let
$$N: x \to argmin_{X_i \in X} ||x - X_i||$$
 (nearest neighbor map)
Then by the Lipschitz property of g and f , we have that $\forall x \in X$,
 $|f(x) - g(x)| \le (K_f + K_g)||x - N(x)|| +$
Lemma 1 $|f(N(x)) - g(N(x))|$
Goes well wit
Voronoï diag!
 $r(X_i) = \max_{x \in \mathcal{V}^d(X_i)} ||x - X_i||$
Then, it holds that
 $J_g^i \le |f(X_i) - g(X_i)| + (K_f + K_g)r(X_i)$
Hence,
 $J_g \le \max_{i \in \{1,...,n\}} |f(X_i) - g(X_i)| + (K_f + K_g)r(X_i)$

> All we need is to compute
$$r(X_i)$$

Experiments on toy functions

Sinus function

 $f: x, y \to \sin(x) \times \sin(y)$

10000 training points

Experiments on toy functions

Holder table function $f: x, y \rightarrow \left| \sin(x) \cos(y) \exp\left(\left| 1 - \frac{\sqrt{x^2 + y^2}}{\pi} \right| \right) \right|$ 10000 training points

Complexity of Voronoï diagrams

Upper bound of L_{∞} error with computation time for Sinus function (left) and Holder table function (right)

Problem: Voronoï diagram's complexity is exponential...

... what about higher d and n?

Learning heat diffusion

Diffusion in 2D:

$$\frac{\partial u}{\partial t} = D\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

- We simulate heat diffusion on a homogeneous surface, with 4 Dirichlet boundary conditions and observe the field at convergence.
- The final heat field depends on the boundary conditions, but not on the initial state nor the diffusivity.

Design of experiment:

- Sample n = 5000 boundary conditions $\{(a_i, b_i, c_i, d_i)\}_{i \in \{1,...,n\}}$ uniformly on $[0,1]^4$.
- ➤ Conduct *n* simulations on a *p*×*p* grid (*p* = 32), yielding a temperature field $\{T_{jk}\}_{i,k\in\{1,...,p\}^2}$.

Training dataset:

➤ A subset of
$$n \times p \times p/10 = 512,000$$
 points {($a_i, b_i, c_i, d_i, x_j, x_k$), $T_{j,k}$ }_{i∈{1,...,n},j,k∈{1,...,p}²}

Neural implicit representation approach!

DEEL

Approximation results

Lipschitz network, MSE= 6.3×10^{-5}

Standard fully connected, MSE= 4.1×10^{-5}

How to handle unknown K_f ?

Two ways:

1. Empirical estimation of Lipschitz constant using:

$$\widehat{K_f} = \max_{i \in \{1,\dots,n\}} \left(\max_{X \in \mathcal{N}_k(X_i)} \frac{|f(X) - f(X_i)|}{\|X - X_i\|} \right)$$

Where $\mathcal{N}_k(X_i)$ is the set of the k-th nearest neighbors of X_i .

- **2.** Hypotheses of f:
 - In [8], the authors compute the Lipschitz constant of f when it is a Gaussian Process interpolating the data.
 - Could apply to polynomial regression
 - We might find the Lipschitz constant by studying the physics [4]

DEEL

Error bound

Lipschitz network, MSE= 6.3×10^{-5}

Maximum empirical L₁error: 0.17

Voronoï diagram with a subset of 20000 points. Takes ≈ 3000 seconds (*exponential* complexity...)

Error bound: 84!! Not very appealing...

> We have to find workarounds to use all the $n \times p \times p = 5,120,000$ points

Outline

- Introduction
- Error bound with Voronoï diagrams
- Bounding with certified Deterministic Optimistic Optimization
- Conclusion & Takeaway

DEEL

Let's consider $\mathbf{X} = \{X_1, ..., X_n\}$ uniformly distributed on $[0,1]^d$.

We have that, $\forall x, i \in [0,1]^d \times \{1, \dots, n\}$,

$$|f(x) - g(x)| \le (K_f + K_g) ||x - X_i|| + |f(X_i) - g(X_i)|$$

We can do better because we can evaluate g(x)!

 $\forall x,i\in [0,1]^d\times\{1,\ldots,n\},$

$$|f(x) - g(x)| \le K_f ||x - X_i|| + |f(X_i) - g(x)|$$

Lemma 2

Now, consider a grid of p^d cells with centers $\{c_1, \dots, c_{p^d}\}$

DEEL

Now, consider a grid of p^d cells $\{C_1, \dots, C_{p^d}\}$ with centers $\{c_1, \dots, c_{p^d}\}$ $\forall k \in \{1, \dots, p^2\}$,

$$|f(c_k) - g(c_k)| \le K_f ||c_k - X_i|| + |g(c_k) - f(X_i)|$$

DEEL

Now, consider a grid of p^d cells $\{C_1, \dots, C_{p^d}\}$ with centers $\{c_1, \dots, c_{p^d}\}$ $\forall k \in \{1, \dots, p^2\}$,

$$|f(c_k) - g(c_k)| \le \frac{K_f ||c_k - X_i||}{|g(c_k) - f(X_i)|} + \frac{|g(c_k) - f(X_i)|}{|g(c_k) - f(X_i)|} + \frac{|g(c_k) - g(c_k)|}{|g(c_k) - g(c_k)|} + \frac{|g(c_k) - g(c_k) - g(c_k)|}{|g(c_k) - g(c_k) - g(c_k)|} + \frac{|g(c_k) - g(c_k) - g(c_k)|}{|g(c_k) - g(c_k) - g(c_k) - g(c_k)|} + \frac{|g(c_k) - g(c_k) - g(c_k) - g(c_k) - g(c_k)|}{|g(c_k) - g(c_k) - g(c_k)$$

DEEL

Now, consider a grid of p^d cells $\{C_1, \dots, C_{p^d}\}$ with centers $\{c_1, \dots, c_{p^d}\}$ $\forall k \in \{1, \dots, p^2\}$,

$$|f(c_k) - g(c_k)| \le \frac{K_f \|c_k - X_i\|}{\|g(c_k) - f(X_i)\|}$$

DEL

Now, consider a grid of p^d cells $\{C_1, \dots, C_{p^d}\}$ with centers $\{c_1, \dots, c_{p^d}\}$ $\forall k \in \{1, \dots, p^2\}$,

$$|f(c_k) - g(c_k)| \le \frac{K_f \|c_k - X_i\|}{\|g(c_k) - f(X_i)\|}$$

Since we know that $\forall x \in C_k$,

$$|f(x) - g(x)| \le |f(c_k) - g(c_k)| + \frac{\sqrt{a}}{2p}(K_f + K_g)$$

DEL

Now, consider a grid of p^d cells $\{C_1, \dots, C_{p^d}\}$ with centers $\{c_1, \dots, c_{p^d}\}$ $\forall k \in \{1, \dots, p^2\}$,

$$|f(c_k) - g(c_k)| \le \frac{K_f \|c_k - X_i\|}{\|g(c_k) - f(X_i)\|}$$

We have that $\forall x \in C_k$, $|f(x) - g(x)| \leq K_f ||c_k - X_i|| + |g(c_k) - f(X_i)| + \frac{\sqrt{a}}{2p} (K_f + K_g)$

DEL

Now, consider a grid of p^d cells $\{C_1, \dots, C_{p^d}\}$ with centers $\{c_1, \dots, c_{p^d}\}$ $\forall k \in \{1, \dots, p^2\}$,

$$|f(c_k) - g(c_k)| \le \frac{K_f \|c_k - X_i\|}{\|g(c_k) - f(X_i)\|}$$

We have that
$$\forall x \in C_k$$
,

$$|f(x) - g(x)| \leq \min_{\substack{i \in \{1, \dots, n\}}} \frac{K_f ||c_k - X_i|| +}{|g(c_k) - f(X_i)|} + \frac{\sqrt{d}}{2p} (K_f + K_g)$$

 $\forall x \in C_k,$

$$|f(x) - g(x)| \le K_{f} ||c_{k} - X_{i}|| + |g(c_{k}) - f(X_{i})| + \frac{\sqrt{d}}{2p} (K_{f} + K_{g})$$
Requires calls to a nearest neighbor algorithm to find $N(c_{k})$
Requires evaluations of $g(c_{k})$, which can be done in batch very efficiently

Computational efforts needed:

- o Nearest neighbor algorithm
 - > Many very efficient libraries (immensely cheaper than Voronoï diagram complexity not exponential)
 - > The bound is still valid with approximate nearest neighbors
- $\circ \quad {\rm Evaluation} \ {\rm of} \ g$
 - Very efficient on GPU

Certified Deterministic Optimistic Optimization [14] Split cells until convergence towards

 $\max_{x \in \mathcal{X}} \min_{i \in \{1, \dots, n\}} K_f \|x - X_i\| + |g(x) - f(X_i)|$

With a known certificate ϵ

Certified Deterministic Optimistic Optimization [14] Finds x^* and ϵ^* such that $\forall x \in \mathcal{X}$

 $\min_{i \in \{1,\dots,n\}} K_f \|x - X_i\| + |g(x) - f(X_i)| \le \epsilon^* + \min_{i \in \{1,\dots,n\}} K_f \|x^* - X_i\| + |g(x^*) - f(X_i)|$

Hence, $\forall x \in \mathcal{X}$

$$|f(x) - g(x)| \le \epsilon^* + \min_{i \in \{1, \dots, n\}} K_f || x^* - X_i || + |g(x^*) - f(X_i)|$$

New bound !

Results on Heat Diffusion

DEL

	Classical Voronoï	Mixed random/mesh	C-DOO
Nb points used	20×10 ³	512×10 ⁴	512×10 ⁴
Total eval time (sec.)	> 3000	1.72	4,87 per iteration (see graph)
$Max L_1$ error (est.)	0.17	0.17	0.17
Upper bound	84	1.87	0, 92

Can be very long, but can stop anytime to obtain a bound

Beyond SciML: Braking Distance Estimation

Braking Distance Estimation for plane landing

	C-DOO	
Nb points used	512×10 ⁴	
Total eval time (sec.)	7.89	
$Max L_1$ error (est. in meters)	763	
Upper bound (in meters)	1097	

In that case, fast convergence

The bound is not far from the worst error obtained in the training dataset with a Lipschitz neural network. => It is practically useful!

We built algorithms to compute strict upper bound for $||f - g||_{\infty}$, where g is a Lipschitz neural net approximating for f. Can be very tight for low dimension.

- Voronoï based, very costly because of Voronoï diagram's exponential complexity.
- > Can be made way cheaper by leveraging the mesh structure of some data dimensions.
- Can be relaxed by casting bounding into an optimization problem and using C-DOO.

Perspectives:

- The method is applicable to **any K-lip model** like Gaussian Processes [8] or Polynomial interpolation.
- The algorithms make it possible **to locate the error**, which could be useful for **active learning** (we could provably reduce the error bound) or **sequential optimization**.
- Goes well with the **Neural Implicit Representation** approach (including PINNs).
- Hybridization between ML and classical solvers
- The work will continue in ANITI's integrative programs:

DEEL(2) AI4SAVE

Check out "<u>Accelerating hypersonic reentry simulations using deep</u> <u>learning-based hybridization (with guarantees)"</u> Novello et al, Journal of Computational Physics!

Preprint version: available soon. Reach me out to know more and stay up to date.

References

- 1. Anil, Cem, James Lucas, and Roger Grosse. "Sorting out Lipschitz Function Approximation." ICML, June 11, 2019. https://doi.org/10.48550/arXiv.1811.05381.
- 2. Baker, Nathan, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar, et al. "Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence," February 2019. https://doi.org/10.2172/1478744.
- 3. Béthune, Louis, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, and Alberto González-Sanz. "Pay Attention to Your Loss: Understanding Misconceptions about 1-Lipschitz Neural Networks." NeurIPS, October 17, 2022. <u>https://doi.org/10.48550/arXiv.2104.0509</u>7.
- 4. Bunin, Gene A., and Grégory François. "Lipschitz Constants in Experimental Optimization." arXiv, January 14, 2017. https://doi.org/10.48550/arXiv.1603.07847.
- 5. Goswami, Somdatta, Aniruddha Bora, Yue Yu, and George Em Karniadakis. "Physics-Informed Deep Neural Operator Networks." arXiv, July 17, 2022. http://arxiv.org/abs/2207.05748.
- 6. Karniadakis, George, Yannis Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. "Physics-Informed Machine Learning," May 24, 2021, 1–19. https://doi.org/10.1038/s42254-021-00314-5.
- 7. Kovachki, Nikola, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. "Neural Operator: Learning Maps Between Function Spaces." arXiv, April 7, 2023. <u>http://arxiv.org/abs/2108.08481</u>.
- 8. Lederer, Armin, Jonas Umlauft, and Sandra Hirche. "Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control." NeurIPS, December 19, 2019. <u>http://arxiv.org/abs/1906.01376</u>.
- 9. Li, Yichen, Peter Yichen Chen, Tao Du, and Wojciech Matusik. "Learning Preconditioners for Conjugate Gradient PDE Solvers." In *Proceedings of the* 40th International Conference on Machine Learning, 19425–39. PMLR, 2023. <u>https://proceedings.mlr.press/v202/li23e.html</u>.
- 10. Serrurier, Mathieu, Franck Mamalet, Thomas Fel, Louis Béthune, and Thibaut Boissin. "On the Explainable Properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective." NeurIPS, June 22, 2023. <u>https://doi.org/10.48550/arXiv.2206.06854</u>.
- 11. Serrurier, Mathieu, Franck Mamalet, Alberto Gonzalez-Sanz, Thibaut Boissin, Jean-Michel Loubes, and Eustasio del Barrio. "Achieving Robustness in Classification Using Optimal Transport with Hinge Regularization." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 505–14. Nashville, TN, USA: IEEE, 2021. https://doi.org/10.1109/CVPR46437.2021.00057.
- 12. Wang, Ruigang, and Ian Manchester. "Direct Parameterization of Lipschitz-Bounded Deep Networks." In *Proceedings of the 40th International Conference on Machine Learning*, 36093–110. PMLR, 2023. <u>https://proceedings.mlr.press/v202/wang23v.html</u>.
- Novello, Paul, Gaël Poëtte, David Lugato, Simon Peluchon, and Pietro Marco Congedo. "Accelerating Hypersonic Reentry Simulations Using Deep Learning-Based Hybridization (with Guarantees)." Journal of Computational Physics, September 30, 2022. <u>https://doi.org/10.48550/arXiv.2209.13434</u>. 33