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Challenges of SciML
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Scientific Machine Learning is thriving [2] …
o Extends traditional surrogate modeling and function approximation to larger scale 

problems (mesh data) [5,7].
o Encompasses new techniques like Physics informed learning, neural operators ([5,6]., 

this workshop) to refine the quality of the approximation and foster practitioner’s trust 
in those models.

…but surrogate models and numerical schemes are not considered equals
o Such models are data driven and lack guarantees as seen classical numerical schemes
o Some workaround to leverage ML without affecting the guarantees:

Ø ML-driven preconditioning [9], Mesh initialization [13],…

…Couldn’t we provide strict approximation guarantees for SciML models? 

Still, the performances of next gen surrogate models can be so good as is…



Finding an error bound for !
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We approximated a function ":$ ∈ ℝ' → ℝ using a neural network ! and a set of 
learning points )*, ,* = " )* , … , )/, ,/ = " )/

Now, can we provide approximation guarantees after the training using 0 and        
12, 32 = 4 12 , … , 15, 35 = 4 15 only?

By finding bounds on 

67 = " − ! 9 = max=∈$ " > − !? >

In the following, we try to bound the norm " − ! 9, with a bound A̅0.
To that end, we will leverage the properties of Lipschitz neural networks



Lipschitz Neural Networks
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A function ! is said Lipschitz continuous, of constant "# if :

∀%, ' ∈ ℝ*, ! % − ! ' ≤ "#× % − '

A neural network . is said "/-Lipschitz when it satisfies the above property.

Its rate of change is 
bounded by "/

"/0.
0%

%
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Motivation: Error bound in 1D

"#

"$ %(')

'
)*+, )* )*-,)* + )*+,

2

0$ ≤ max
*∈{,,…,9}

1
2 "$ + "# )* − )*+, + %()*) − <()*)

Take the difference between maximum variation of % and < on each subdivision:

%()*+,)
%()*)

= 0 in this 
example
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Motivation: Error bound in 2D (and beyond)

"#,%"#&',%

"#&',%(' "#,%(' "#(',%('

"#(',%

"#(',%&'"#,%&'"#&',%&'

ℎ

• Consider *+ learning points 
"#,% #,%∈{',…/}^+

at the center of a grid 

with cells of edge size ℎ.

In the 2-th cell of center "#,%:

34
5 ≤ 7 "#,% − 9 "#,% +

1

2
<= + <4 ℎ = ̅34

5

1

2
ℎ

Bound in @D (A = @):

Bound in CD (A = C):

In the 2-th cell of center "E:

34
5 ≤ 7 "E − 9 "E +

F

+
<= + <4 ℎ = ̅34

5

Then, 
34 ≤ max

5
̅34
5
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Breaking free from grids

Main problem: Learning points are rarely structured as a grid

What about learning in the context of Scientific ML? 

We control the design of experiment so we could build it as a grid
Very constraining:

o The DOE should be defined in advance and we could not add points sequentially
o Grids suffer from the curse of dimensionality, the number of ! evaluations would 

grow exponentially with "
o Monte Carlo is convenient

Aim of this work: find ways to build upper bounds for #$ when 
%&, (& = ! %& , … , %+, (+ = ! %+ is not structured as a grid 
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Outline

Ø Introduction
Ø Error bound with Voronoï diagrams
Ø Bounding with certified Deterministic Optimistic Optimization
Ø Conclusion & Takeaway



9

Definition of a Voronoï diagram (and some notations)

A Voronoï diagram !" is built on a set of points # =
%&, … , %) , X+ ∈ - ⊂ ℝ0 .

Each point is called a site, and the diagram is defined by 
its cells {20(%&), … , 20(%))} themselves defined by

20(%6) = 7 ∈ - ∀9 ∈ 1,… , ; , 7 − %6 ≤ 7 − %> }

If 7 ∈ 20(%6), then %6 is the nearest neighbor of 7

We have that - = ⋃6∈{&,…,)} 20(%6), so to obtain ̅AB, 
it is enough finding ̅AB6 , an upper bound for 

AB6 = max
F∈2G(HI)

J 7 − K(7)
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Error bound using Voronoï diagram 

Let ! "# be the radius of $%("#) defined by
! "# = max

,∈$.(/0)
1 − "#

Then, it holds that 
34# ≤ 6 "# − 7 "# + 9: + 94 !("#)

Hence, 
34 ≤ max

#∈{<,…,?}
6 "# − 7 "# + 9: + 94 !("#)

Ø All we need is to compute !("#)

Let A: 1 → D!7min
/0∈G

1 − "# (nearest neighbor map)

Then by the Lipschitz property of 7 and 6, we have that ∀1 ∈ I,

6 1 − 7 1 ≤ 9: + 94 1 − A 1 +
6 A 1 − 7(A 1 )Lemma 1

Goes well with 
Voronoï diag!
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Experiments on toy functions

!: #, % → sin # ×sin(%)
Sinus function

10000 training points
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Experiments on toy functions

!: #, % → sin # cos % exp 1 − #1 + %1
3

Holder table function

10000 training points
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Complexity of Voronoï diagrams

Problem: Voronoï diagram’s complexity is exponential…

… what about higher ! and "?

Upper bound of #$error with computation time for Sinus function (left) and Holder table function (right)

Best upper bound: 0.098
High sample estimation: 0.087

Best upper bound: 0.53
High sample estimation: 0.42
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Learning heat diffusion 

Diffusion in !D:
"#
"$ = &

"'#
"(' +

"'#
"*'

Ø We simulate heat diffusion on a homogeneous surface , with 4 Dirichlet boundary 
conditions and observe the field at convergence.

Ø The final heat field depends on the boundary conditions, but not on the initial state 
nor the diffusivity. 

Design of experiment: 

Ø Sample , = 5000 boundary conditions /0, 20, 30, 40 0∈{7,…,9} uniformly on 0,1 <.
Ø Conduct , simulations on a =×= grid (= = 32), yielding a temperature field CDE D,E∈ 7,…,F G.

Training dataset: 

Ø A subset of ,×=×=/10 = 512,000 points /0, 20, 30, 40, (D, (E , CD,E 0∈ 7,…,9 ,D,E∈ 7,…,F G

Neural implicit representation approach!
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Approximation results

Standard fully connected, MSE=4.1×10&'

Lipschitz network, MSE=6.3×10&'
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How to handle unknown !"?

Two ways:

1. Empirical estimation of Lipschitz constant using:

#!" = max(∈{+,…,.} max
0∈12 03

4 5 − 4(5()
5 − 5(

Where 19 5( is the set of the :-th nearest neighbors of 5(.

2. Hypotheses of 4:
o In [8], the authors compute the Lipschitz constant of 4 when it is a 

Gaussian Process interpolating the data.
o Could apply to polynomial regression
o We might find the Lipschitz constant by studying the physics [4]
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Error bound

Lipschitz network, MSE=6.3×10'(

Ø Maximum empirical )*error: +. ,-
Voronoï diagram with a subset of 20000 points. Takes ≈ 3000 seconds 
(01234045678 complexity…) 

Ø Error bound: 9:!! Not very appealing…
Ø We have to find workarounds to use all the 4×2×2 = 5,120,000 points 
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Outline

Ø Introduction
Ø Error bound with Voronoï diagrams
Ø Bounding with certified Deterministic Optimistic Optimization
Ø Conclusion & Takeaway
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Mapping to grid

Let’s consider ! = #$, … , #' uniformly 
distributed on [0,1], . 

#-

Now, consider a grid of ., cells with centers 
{0$, … , 012}

We have that, ∀5, 6 ∈ 0,1 ,×{1, … , 9},

: 5 − < 5 ≤ >? + >A 5 − #- +
: #- − <(#-)

We can do better because we can evaluate D(E)!

∀5, 6 ∈ 0,1 ,×{1, … , 9},

: 5 − < 5 ≤ >? 5 − #- + |: #- − < 5 |

Lemma 2

#G
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!"

∀$ ∈ 1, … , )* ,

+ ,- − /(,-) ≤ 34 ,- − !" +
/ ,- − +(!")

Now, consider a grid of )6 cells 78, … , 79: with 

centers {,8, … , ,9:}

Mapping to grid

!=
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!"
#$

%&
'&

Mapping to grid

Now, consider a grid of () cells %*, … , %-. with 

centers {'*, … , '-.}
∀2 ∈ 1, … , (5 ,

6 '& − 8('&) ≤ #$ '& − !" +
8 '& − 6(!")

!=
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!"!"
#$

%&
'&

Mapping to grid

Now, consider a grid of () cells %*, … , %-. with 

centers {'*, … , '-.}
∀2 ∈ 1, … , (5 ,

6 '& − 8('&) ≤ #$ '& − !" +
8 '& − 6(!")

!=
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!"

#$

%&

Since we know that ∀( ∈ #$,

+ ( − - ( ≤ + /$ − - /$ +
1
23 (%& + %5)

/$

Mapping to grid

Now, consider a grid of 71 cells #8, … , #3: with 

centers {/8, … , /3:}
∀= ∈ 1, … , 72 ,

+ /$ − -(/$) ≤ %& /$ − !" +
- /$ − +(!")

!?
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!"

#$

%&
'$

We have that ∀) ∈ #$,

, ) − .()) ≤ %& '$ − !" +
. '$ − ,(!") +
3
45 (%& + %6)

Mapping to grid

Now, consider a grid of 73 cells #8, … , #5: with 

centers {'8, … , '5:}
∀= ∈ 1, … , 74 ,

, '$ − .('$) ≤ %& '$ − !" +
. '$ − ,(!")

!?
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!"

!#

$%

&'
(%

We have that ∀* ∈ $%,

- * − /(*) ≤ min
"∈ 6,…,8

&' (% − !" +
/ (% − - !"

+ :
;< (&' + &=)

Mapping to grid

Now, consider a grid of >: cells $6, … , $<? with 

centers {(6, … , (<?}
∀B ∈ 1, … , >; ,

- (% − /((%) ≤ &' (% − !" +
/ (% − -(!")
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Mapping to grid

∀" ∈ $%,

' " − ) " ≤ +, -% − ./ + ) -% − '(./) +
3
25 (+, + +6)

freeRequires evaluations
of )(-%), which can be

done in batch very
efficiently

Requires calls to a 
nearest neighbor
algorithm to find

7 -%

Computational efforts needed:
o Nearest neighbor algorithm

Ø Many very efficient libraries (immensely cheaper than Voronoï diagram – complexity not exponential)

Ø The bound is still valid with approximate nearest neighbors 
o Evaluation of )

Ø Very efficient on GPU
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C-DOO

∀" ∈ $%,

' " − )(") ≤ min
0∈ 1,…,3

45 6% − 70 +
) 6% − ' 70

+ 9
:; (45 + 4<)

low high
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C-DOO

∀" ∈ $%,

' " − )(") ≤ min
0∈ 1,…,3

45 6% − 70 +
) 6% − ' 70

+ 9
:; (45 + 4<)

low high

Certified Deterministic
Optimistic Optimization [14]
Split cells until convergence towards

max
?∈@

min
0∈ 1,…,3

45 " − 70 + ) " − '(70)

With a known certificate A
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Mapping to grid

Certified Deterministic Optimistic Optimization [14]
Finds !∗ and #∗ such that ∀! ∈ &

min
*∈ +,…,.

/0 ! − 2* + 4(!) − 7(2*) ≤ #∗ + min
*∈ +,…,.

/0 !∗ − 2* + 4(!∗) − 7(2*)

7 ! − 4(!) ≤ #∗ + min*∈ +,…,. /0 !∗ − 2* + 4(!∗) − 7(2*)

Hence, ∀! ∈ &

New bound !
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Results on Heat Diffusion

Classical Voronoï Mixed random/mesh C-DOO

Nb points used 20×10% &'(×')* &'(×')*

Total eval time (sec.) > 3000 '. .( 4,87 per iteration (see graph)

Max 34 error (est.) 0.17 0.17 0.17
Upper bound 84 1.87 ), 5(

Can be very long, but 
can stop anytime to 
obtain a bound

Valid bound

Valid bound

Valid bound
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Beyond SciML: Braking Distance Estimation

C-DOO

Nb points used !"#×"%&

Total eval time (sec.) 7.89
Max +, error (est. in meters) 763
Upper bound (in meters) "%/0

In that case, fast
convergence

Braking Distance Estimation for plane landing

The bound is not far from the worst error obtained in the training dataset with a 
Lipschitz neural network.
=> It is practically useful!



32

Takeaways - conclusions

We built algorithms to compute strict upper bound for ! − # $, where # is a Lipschitz 
neural net approximating for !. Can be very tight for low dimension.

Ø Voronoï based, very costly because of Voronoï diagram’s exponential complexity.
Ø Can be made way cheaper by leveraging the mesh structure of some data dimensions.
Ø Can be relaxed by casting bounding into an optimization problem and using C-DOO.

o The method is applicable to any K-lip model like Gaussian Processes [8] or Polynomial interpolation.
o The algorithms make it possible to locate the error, which could be useful for active learning (we could 

provably reduce the error bound) or sequential optimization.
o Goes well with the Neural Implicit Representation approach (including PINNs). 
o Hybridization between ML and classical solvers
o The work will continue in ANITI’s integrative programs:

Perspectives:

Check out “Accelerating hypersonic reentry simulations using deep 
learning-based hybridization (with guarantees)” Novello et al, Journal of 
Computational Physics!

(2) AI4SAVE Preprint version: available soon. Reach me out to 
know more and stay up to date.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uaJK95oAAAAJ&citation_for_view=uaJK95oAAAAJ:Tyk-4Ss8FVUC
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