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“The AI opportunity for the Earth is significant. Today’s AI explosion will see us add AI 

to more and more things every year.... As we think about the gains, efficiencies and 

new solutions this creates for nations, business and for everyday life, we must also 

think about how to maximize the gains for society and our environment at large.”

– The World Economic Forum: Harnessing Artificial Intelligence for the Earth. 2018 

    

   
  



Climate Informatics: using Machine Learning 
to address Climate Change

2008 Started research on Climate Informatics, with Gavin Schmidt, NASA

 2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]

 2011 Launched International Workshop on Climate Informatics, New York Academy of Sciences

 2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years

 2013 “Climate Informatics” book chapter [M et al., SAM]

  2014 “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurIPS Tutorial]

 2015 Launched Climate Informatics Hackathon, Paris and Boulder

 2018 World Economic Forum recognizes Climate Informatics as key priority

 2021 Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper]

 2022 First batch of articles published in Environmental Data Science, Cambridge University Press 

 2024 13th Conference on Climate Informatics, Turing Institute, London 

 2025   14th Conference on Climate Informatics, April 28-30, Rio de Janeiro, Brazil



Creating transdisciplinary research communities

Hackathons: data science challenges on science problems
 Help students to collaborate with their peers in other fields

New publication venues that are truly cross-discipline

Events, including time for casual discussion
● Machine Learning for the Physics of Climate, Kavli Institute, UCSB 
  → forthcoming paper in Nature Reviews Physics
● This ELLIIT Symposium and study period is a great example!

● Call for Working Groups: Environmental Data Science Innovation and 
Inclusion Lab (ESIIL)
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AI Research for Climate Change  and Environmental Sustainability



Approach: Exploit all available data

❑ Simulated data generated by physics-based models 
❑  Numerical Weather Prediction (NWP) models

❑  General Circulation Models (GCM)

❑  Regional Climate Models (RCM)

❑  Reanalysis data
❑  Gridded data products from data assimilation: 

applies physical laws to observations

 

❑  Observation data  
❑  Satellite remote sensing data

❑  In-situ data



Downscaling climate model simulations

Global climate model simulations are 
coarser scale (in space and time) than 
needed for multiple tasks in:

• Climate change adaptation

• Climate change mitigation

• Projecting long-term impacts

Approach: Use generative AI to 
downscale climate model data to 
relevant scales

[Gettelman, et al., Science Advances, 2022]



AI Methods

❑ Semi-supervised, unsupervised, self-supervised learning
❑  New methods for downscaling (super-resolution), interpolation of geospatial data  

❑  New pretext tasks for self-supervised learning, e.g., STINT [Harilal et al., 2024]

❑  Regularization via multi-tasking over variables, lead-times

❑  Generative AI
❑  VAE, Normalizing Flows

❑  Diffusion models

❑  Develop new generative downscaling methods, e.g., [Groenke et al., 2020]

 

❑  Learning under non-stationarity
❑  Learn level of non-stationarity over time and space
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Outline

What is self-supervised learning?
 
 A pretext task for temporal interpolation of geospatial data

What is generative deep learning?

 Normalizing flows for downscaling geospatial data

Implications for Climate Data Equity
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Unsupervised Deep Learning

• Supervised DL. Prediction loss is a function of the label, y, 
and the network’s output on input x.

 Network output  Loss function

• Unsupervised DL. Prediction loss is only a function of x, 
and the network’s output on input x. There is no label, y.

 Network output  Loss function



Self-Supervised Approach to Unsupervised learning

Self-supervised learning 
A state-of-the-art approach to (deep) unsupervised learning

Design a pretext task:

❑ Design a supervised learning task using only the available data.

❑ Train a model on this task such that,

❑ the learned features (or the learned posterior over a feature space) 
will be useful for another (down-stream) task.
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Pretext Task: Example

Classic example of a pretext task: Autoencoder

• Train a neural network in an unsupervised way
• Use the unlabeled data both as input, and to evaluate the output

• After training, the bottleneck layer will be a compact representation of the 
input distribution



Outline

What is self-supervised learning?
 
 A pretext task for temporal interpolation of geospatial data

What is generative deep learning?

 Normalizing flows for downscaling geospatial data

Implications for Climate Data Equity

15



Why we can’t just use existing AI algorithms

● Climate change applications involve geospatial data evolving with time

○ Observation data that has been gridded over the globe using data assimilation

○ Simulations output by physics-driven models (NWP, GCM, RCM)

● These are tensors of real-values over latitude, longitude, time, 
 and possibly over multiple climatological variables

● Computer Vision algorithms for “spatiotemporal data,” rely on 
properties of video data that do not generalize well to geospatial data

○ e.g., depth, edges, and “objects”

○ vs. ephemeral patterns in fluids

16



STINT: Self-supervised Temporal Interpolation

[Harilal, Hodge, Subramanian, & Monteleoni, 2023]

State-of-the-art Computer Vision for 
temporal interpolation of video uses 
Optical Flow. 
This is problematic on geospatial data.



A pretext task for temporal downscaling

[Harilal, Hodge, Subramanian, & Monteleoni, 2023]

STINT: Self-supervised Temporal Interpolation for Geospatial Data



A pretext task for temporal interpolation

[Harilal, Hodge, Subramanian, & Monteleoni, 2023]

STINT: Self-supervised Temporal Interpolation for Geospatial Data
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Encoder Decoder

Input Output

Latent representation

Autoencoder: The parameters of the encoder and 
decoder networks are trained to make the output 
approximate the input. After training on many input 
examples, the parameters of the bottleneck layer form 
a compact representation of the input distribution.



Variational Autoencoder (VAE)

Learn a distribution over latent representations, instead of a single encoding



Normalizing Flows

Can be viewed as extension of VAE beyond Gaussian assumption on latent space

Learn a series of invertible transformations, {fi}, from a simple prior on latent 
space, Z, to allow for more informative distributions on the latent space:

[Rezende & Mohamed, ICML 2015]



Outline
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Normalizing Flows: Application to Spatial Downscaling

ERA: reanalysis data, 1° resolution; WRF: numerical weather model prediction, 
1

8
 ° resolution

[Groenke, Madaus, & Monteleoni, Climate Informatics 2020]



Downscaling as Domain Alignment

• Domain alignment task: given random variables X, Y, learn a mapping f: X → Y 
such that, for any xi ∈ X and yi ∈ Y,           
  

• Downscaling as domain alignment
• Given i.i.d. samples at low resolution (X) and high-resolution (Y)

• Learn the joint PDF over X and Y by assuming conditional independence over 
a shared latent space Z, 

• Model     using AlignFlow [Grover et al. 2020]
• Starting with a simple prior on PZ , learn normalizing flows

• No pairing between x and y examples needed!



ClimAlign architecture

• Architecture follows AlignFlow 
[Grover et al., 2020]

• Normalizing flow: Glow [Kingma & 
Dhariwal, 2018]

Network parameters to learn:



ClimAlign: Unsupervised, generative downscaling

General downscaling technique via domain alignment with normalizing flows 
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurIPS 2018]

• Unsupervised: do not need paired maps at low and high resolution

• Generative: can sample from posterior over latent representation OR sample 
conditioned on a low (or high!) resolution map

• Intepretable, e.g., via interpolation

[Groenke, Madeus, & Monteleoni, Climate Informatics 2020]



Summary & Outlook
A pretext task for temporal downscaling of geospatial data

Works best when input data is spatially aligned

Normalizing flows for spatial downscaling of geospatial data

Does not require temporal alignment of the coarse and fine scale data

Works best when data is spatially aligned

Is there one pretext task for downscaling in both space and time?

Does it provide features that are useful for other downstream tasks?
33



Other generative DL projects

❑ Landry, D., Charantonis, A., & Monteleoni, C. (2024). Leveraging 
deterministic weather forecasts for in-situ probabilistic temperature 
predictions via deep learning. Monthly Weather Review.

❑ Generative downscaling for solar and wind energy planning

❑ Ensemble generation via climate model emulation with diffusion 
training
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“Many majority-
Black parts of the 
Southeast [USA] 
are relatively far 
from radar sites, 
meaning that it’s 
harder to gather 
information about 
storms impacting 
these areas.”

Credit: Jack Sillin, in 
[McGovern et al., 
Environmental Data 
Science, 2022]



AI for Climate Data Equity
 
● Train models in high-data regions and apply them in low-data regions

○ Can evaluate them against supervised learning models in high-data regions

○ Can fine-tune them using the limited data in the low-data regions

● Contribution to climate data equity

○ Local scales (e.g. legacy of environmental injustice in USA)

○ Global scales: 

■ Global North historically emitted more carbon; Meanwhile there’s typically more data there

■ Global South is suffering the most severe effects of the resulting warming
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And many thanks to: 

 Anastase Charantonis, INRIA Paris
 Guillaume Couairon, INRIA Paris
 Graham Clyne, INRIA Paris
 Brian Groenke, Alfred Wegener Institute
 Nidhin Harilal, University of Colorado Boulder
 David Landry, INRIA Paris
 Christian Lessig, ECMWF
 

          
 

          
 

Thank you!

Climate and Machine Learning Boulder (CLIMB)



AI Research for Climate Change and Environmental Sustainability (ARCHES)



@envdatascience

An interdisciplinary, open access journal dedicated to the potential of 
artificial intelligence and data science to enhance our understanding of 
the environment, and to address climate change.

  Data and methodological scope: Data Science broadly defined, including: 
  Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes: 
Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry & 
physics, paleoclimatology)
Climate change (including carbon cycle, transportation, energy, and policy)
Sustainability and renewable energy (the interaction between human processes and ecosystems, including 
resource management, transportation, land use, agriculture and food)
Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)
Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)
Environmental policy and economics

www.cambridge.org/eds



Environmental Data Science 

Innovation & Inclusion Lab 

NSF’s newest data synthesis center, 
hosted by the University of Colorado Boulder & CIRES, 

with key partners CyVerse & the University of Oslo

A national accelerator linking data, discovery, & decisions



Bonus slides
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Revolution in AI for weather forecasting 

43

Since 2022, a variety of deep learning models have shown weather forecasting performance 
comparable or BETTER than numerical weather prediction (NWP), the previous SOTA. 

• Training data: ERA5, a reanalysis data set 
produced by  data assimilation

• Training task: auto-regression: forecasting 6-24 
hours ahead
• Rolled-out to forecast 7-10 days ahead

[European Center for Medium Range Weather Forecasting (ECMWF) website]
[Couairon et al., 2024]



Lighter-weight AI weather forecasting 
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New in ArchesWeather:
- Train at courser data resolution
- Replace 3D attention with:

[Couairon et al., ArchesWeather: an efficient AI weather model at 1.5º resolution, 
ICML 2024 workshop on Earth System Modeling]

Pangu-Weather: A 3D High-Resolution System for Fast and 
Accurate Global Weather Forecast, Bi et al., Nature 2023

latitude + 
longitude

altitude



Lighter-weight AI weather forecasting 
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24h lead time Q700 forecast
init date: 28 sept 2019

• Deterministic prediction shows unrealistic smoothing
• Try ensemble generation via diffusion training
• Goal: each sampled member should be more physical



Generative AI for weather and climate
Ensemble forecast generation

❑ Multivariate emulation of kilometer-scale numerical weather predictions with generative adversarial 
networks : a proof-of-concept. C. Brochet, L. Raynaud, N. Thome, M. Plu et C. Rambour, Artificial 
Intelligence for the Earth Systems, 2023

❑ GenCast: Diffusion-based ensemble forecasting for medium-range weather, Price et al., 2023

❑ Leveraging deterministic weather forecasts for in-situ probabilistic temperature predictions via deep 
learning. David Landry, Anastase Charantonis, and Claire Monteleoni. Monthly Weather Review, 2024

❑ ArchesWeather: an efficient AI weather model at 1.5º resolution. Guillaume Couairon, Anastase 
Charantonis, Christan Lessig, and Claire Monteleoni. In preparation. Preliminary results in ICML 2024 
workshop on Earth System Modeling

❑ Diffusion-based ensemble generation for emulating climate models at decadal time scales. Graham 
Clyne, Guillaume Couairon, Anastase Charantonis, Guillaume Gastinau, Juliette Mignot, and Claire 
Monteleoni. Work in progress
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Probabilistic ensemble generation from a single 
forecast  [Landry, Charantonis & Monteleoni. Monthly Weather Review, 2024]
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Probabilistic ensemble generation from a single 
forecast  [Landry, Charantonis & Monteleoni. Monthly Weather Review, 2024]

1066 weather stations

48

Data from METAR: Mean forecast errorProbabilistic prediction skill score



ArchesWeather with generative training
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[Couairon et al., ArchesWeather: an efficient AI weather model at 1.5º resolution, manuscript]

Backbone: ArchesWeather variant 
of Swin U-Transformer; 44M 
parameters

Trained with Flow Matching

Inference done with 25 sampling 
steps per 24 hours

Roll-outs done via one sample 
each 24 hours. Input this output 
into trained model and repeat.
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Flow Matching vs. Diffusion

Intuition: Make straighter paths between data samples and noise samples

Results: Straighter paths in the probability flows, allowing us to sample in fewer diffusion steps 
→ Speed-ups



A sample trajectory



Ensemble member diversity; lead-time 10 days
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