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new solutions this creates for nations, business and for everyday life, we must also

think about how to maximize the gains for society and our environment at large.”




Climate Informatics: using Machine Learning  ((cl.
to address Climate Change

2008 Started research on Climate Informatics, with Gavin Schmidt, NASA

2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]
2011 Launched International Workshop on Climate Informatics, New York Academy of Sciences
2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years

2013  “Climate Informatics” book chapter [M et al., SAM]

2014  “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurlPS Tutorial]
2015 Launched Climate Informatics Hackathon, Paris and Boulder

2018 World Economic Forum recognizes Climate Informatics as key priority
2021 Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper]

2022  First batch of articles published in Environmental Data Science, Cambridge University Press
2024 13" Conference on Climate Informatics, Turing Institute, London

2025 14t Conference on Climate Informatics, April 28-30, Rio de Janeiro, Brazil



Creating transdisciplinary research communities

Hackathons: data science challenges on science problems
Help students to collaborate with their peers in other fields

New publication venues that are truly cross-discipline

Events, including time for casual discussion

o Machine Learning for the Physics of Climate, Kavli Institute, UCSB
- forthcoming paper in Nature Reviews Physics

e This ELLIIT Symposium and study period is a great example!

o Call for Working Groups: Environmental Data Science Innovation and
Inclusion Lab (ESIIL)



Al Research for Climate Change and Environmental Sustainability
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Approach: Exploit all available data

d Simulated data generated by physics-based models
( Numerical Weather Prediction (NWP) models
1 General Circulation Models (GCM)
(d Regional Climate Models (RCM)

Horizontal Grid
(Latitude-Longitude)

Vertical Grid
(Height or Pressure)

llllllllllll

J Reanalysis data

J Gridded data products from data assimilation:
applies physical laws to observations

1 Observation data
1 Satellite remote sensing data Ny ==
O In-situ data B




Downscaling climate model simulations

Global climate model simulations are
coarser scale (in space and time) than
needed for multiple tasks in:

* Climate change adaptation

* Climate change mitigation

* Projecting long-term impacts

Approach: Use generative Al to
downscale climate model data to
relevant scales
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[Gettelman, et al., Science Advances, 2022]
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Al Methods

d Semi-supervised, unsupervised, self-supervised learning

d New methods for downscaling (super-resolution), interpolation of geospatial data
(d New pretext tasks for self-supervised learning, e.g., STINT [Harilal et al., 2024]
(d Regularization via multi-tasking over variables, lead-times

J Generative Al

O VAE, Normalizing Flows
d Diffusion models
(d Develop new generative downscaling methods, e.g., [Groenke et al., 2020]

(d Learning under non-stationarity
1 Learn level of non-stationarity over time and space
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A pretext task for temporal interpolation of geospatial data

What is generative deep learning?
Normalizing flows for downscaling geospatial data

Implications for Climate Data Equity
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Unsupervised Deep Learning

e Supervised DL. Prediction loss is a function of the label, v,
and the network’s output on input x.

Network output Loss function

fw(z) =7 LY, y)

* Unsupervised DL. Prediction loss is only a function of x,
and the network’s output on input x. There is no label, v.

Network output Loss function

fw(x) =2 L(z,x)



Selt-Supervised Approach to Unsupervised learning

Self-supervised learning
A state-of-the-art approach to (deep) unsupervised learning

Design a pretext task:

0 Design a supervised learning task using only the available data.
O Train a model on this task such that,

o the learned features (or the learned posterior over a feature space)
will be useful for another (down-stream) task.



Pretext Task: Example

Classic example of a pretext task: Autoencoder

* Train a neural network in an unsupervised way
* Use the unlabeled data both as input, and to evaluate the output

e After training, the bottleneck layer will be a compact representation of the
input distribution

-

Original
input

Encoder

-

Compressed

L(Z,x)

Decoder

al

Reconstructed

representation

input
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Why we can’t just use existing Al algorithms

o Climate change applications involve geospatial data evolving with time

o Observation data that has been gridded over the globe using data assimilation

o Simulations output by physics-driven models (NWP, GCM, RCM)

e These are tensors of real-values over latitude, longitude, time,
and possibly over multiple climatological variables

o Computer Vision algorithms for “spatiotemporal data,” rely on
properties of video data that do not generalize well to geospatial data

o e.g., depth, edges, and “objects”

o Vs. ephemeral patterns in fluids



STINT: Self-supervised Temporal Interpolation

SuperSloMo STint Ground Truth

State-of-the-art Computer Vision for
temporal interpolation of video uses
Optical Flow.

This is problematic on geospatial dataj

[Harilal, Hodge, Subramanian, & Monteleoni, 2023]




A pretext task for temporal downscaling

STINT: Self-supervised Temporal Interpolation for Geospatial Data
[Harilal, Hodge, Subramanian, & Monteleoni, 2023]
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A pretext task for temporal interpolation

STINT: Self-supervised Temporal Interpolation for Geospatial Data
[Harilal, Hodge, Subramanian, & Monteleoni, 2023]
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STINT: Self-supervised Temporal Interpolation
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Cycle-consistency 1

A’ Cycle-consistency 2

[Harilal, Hodge, Subramanian, & Monteleoni, 2023]



STINT: Self-supervised Temporal Interpolation

38 B ' ' ' ' | ' ' ' ' | ' : : : ]
- - STint : ERAS Solar
36  -E} SuperSloMo ] oaSE_ (1) PSNR(D) SSIM (1)
! Geospatial data /D ) Baseline 0.3086 25.238 0.623
34 ] SuperSloMo 0.0907 30.157 0.733
i 7 Proposed 0.0561 32.731 0.792
IPSL Wind
Baseline 0.6206 24.097 0.619
SuperSloMo 0.4150 29.713 0.681
Proposed 0.2904 31.167 0.713
CARRA Temperature
Baseline 0.5319 27.832 0.667
SuperSloMo 0.1604 30.276 0.724
Proposed 0.0975 31.908 0.775
4 ] 1 1 1 1 ] 1 1 1 1 ] 1 1 1 1 I - ‘ - -
IPSL SEN12MS ERAS5 UCF101
(3-hourly) (2-hourly) (1-hourly) (25-FPS)

Temporal Frequency
[Harilal, Hodge, Subramanian, & Monteleoni, 2023]
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Autoencoder: The parameters of the encoder and
decoder networks are trained to make the output
approximate the input. After training on many input
examples, the parameters of the bottleneck layer form
a compact representation of the input distribution.

Output




Variational Autoencoder (VAE)

Learn a distribution over latent representations, instead of a single encoding

| J | ] | J

encode sampling decode



Radial

qo

Normalizing Flows iy la: x :" ]
[Rezende & Mohamed, ICML 2015] . “- --\ ’ n

Can be viewed as extension of VAE beyond Gaussian assumption on latent space

r K=101

Learn a series of invertible transformations, {f;}, from a simple prior on latent
space, Z, to allow for more informative distributions on the latent space:

ZkakOfk—1O'“Of1(Zo)
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Normalizing Flows: Application to Spatial Downscaling

[Groenke, Madaus, & Monteleoni, Climate Informatics 2020]

ERA: reanalysis data, 1° resolution; WRF: numerical weather model prediction, 3 resolution

ERA-I, max temperature WRF-8, max temperature

&
=
L
h

ERA-I, precipitation

precipitation {m




Downscaling as Domain Alignment

* Domain alignment task: given random variables X, Y, learn a mapping f: X 2> Y
such that, for any x, E Xand y; €Y,

f(zs) ~ Py F~ (y:) ~ Px

* Downscaling as domain alighment

e Given i.i.d. samples at low resolution (X) and high-resolution (Y)

* Learn the joint PDF over X and Y by assuming conditional independence over
a shared latent space Z,

Pxy (z,y) :/

z€/

Pl 28 = / P(o|2)Py|2)Pa(2)dx

z€L

* Model P(x|z), P(y|z) using AlignFlow [Grover et al. 2020]

* Starting with a simple prior on P,, learn normalizing flows
* No pairing between x and y examples needed!



ClimAlign architecture

fx: Ze X

X

layer
Input Squeeze x K
(Low resolution, upsampled)

Input to next

Latent
variables

l Reshape/Concat x L

Network parameters to learn: @,g :
f¢ X & 7
gy - Y & /7

Latent variables

Y

Input Squeeze
(High resolution)

l Reshape/Concat x L

Latent variables

Input to next
layer

Architecture follows AlignFlow
[Grover et al., 2020]

Normalizing flow: Glow [Kingma &
Dhariwal, 2018]



ClimAlign: Unsupervised, generative downscaling

“o&o&”q —— - ',.‘-’;,G o - ~
( ( oy .;_’b‘ (

bvge g il = (b

General downscaling technique via domain alighment with normalizing flows
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurlPS 2018]

* Unsupervised: do not need paired maps at low and high resolution

* Generative: can sample from posterior over latent representation OR sample
conditioned on a low (or high!) resolution map

* Intepretable, e.g., via interpolation

[Groenke, Madeus, & Monteleoni, Climate Informatics 2020]



Summary & Outlook

A pretext task for temporal downscaling of geospatial data

Works best when input data is spatially aligned

Normalizing flows for spatial downscaling of geospatial data
Does not require temporal alignment of the coarse and fine scale data

Works best when data is spatially aligned

Is there one pretext task for downscaling in both space and time?

Does it provide features that are useful for other downstream tasks?

33



Other generative DL projects

a Landry, D., Charantonis, A., & Monteleoni, C. (2024). Leveraging
deterministic weather forecasts for in-situ probabilistic temperature
predictions via deep learning. Monthly Weather Review.

o Generative downscaling for solar and wind energy planning

o Ensemble generation via climate model emulation with diffusion
training
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Are Black Americans Underserved by the NWS Radar Network?
"] Excellent Radar Coverage
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Al for Climate Data Equity

e Train models in high-data regions and apply them in low-data regions
o Can evaluate them against supervised learning models in high-data regions

o Can fine-tune them using the limited data in the low-data regions

o Contribution to climate data equity
o Local scales (e.g. legacy of environmental injustice in USA)

o Global scales:

s Global North historically emitted more carbon; Meanwhile there’s typically more data there

s Global South is suffering the most severe effects of the resulting warming



Thank you!

And many thanks to:

Anastase Charantonis, INRIA Paris

Guillaume Couairon, INRIA Paris

Graham Clyne, INRIA Paris

Brian Groenke, Alfred Wegener Institute
Nidhin Harilal, University of Colorado Boulder
David Landry, INRIA Paris

Christian Lessig, ECMWF
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o ENVIRONMENTAL
DATA SCIENCE

An interdisciplinary, open access journal dedicated to the potential of
artificial intelligence and data science to enhance our understanding of
the environment, and to address climate change.

Data and methodological scope: Data Science broadly defined, including:
Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes:

Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry &
physics, paleoclimatology)

Climate change (including carbon cycle, transportation, energy, and policy)

Sustainability and renewable energy (the interaction between human processes and ecosystems, including
resource management, transportation, land use, agriculture and food)

Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)
Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)

Environmental policy and economics
O @envdatascience

OPEN a ACCESS

www.cambridge.org/eds

i CAMBRIDGE

UNIVERSITY PRESS




g .

Enwronmeﬂ’ral Da’ra Sc:|enc;e .
Irmova’non & Inclusmn Labé

: 3 L _’Qv% 5 *’w,ﬂ
aﬁw': i ' N
A natlonal accelera'tor Imkmg data dﬁscove.rf & dec:svg,ns
\ ‘\%_\ - '._ ,, ‘K «3*1 ‘_ .

' NSF S newest data &/ thGSIQQEﬁfér '
" hosted by the Universi lorado Boulder & CIRES
with key partners C»y erse & the UnlverSIty of Oslo t;‘t -'s

% & e S




Bonus slides
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Revolution in Al for weather forecasting

Since 2022, a variety of deep learning models have shown weather forecasting performance
comparable or BETTER than numerical weather prediction (NWP), the previous SOTA.

* Training data: ERAS, a reanalysis data set e Training task: auto-regression: forecasting 6-24
produced by data assimilation hours ahead
Global Observing System ECMWF model * Rolled-out to forecast 7-10 days ahead
< ™ \ s N
,)x‘_ < i E 7 o FuXi ®GraphCast g poyralGem
- et |
\ H @ h c 10
; ata w1 ’
— 1 BV e £ O @ stormer ) NeuralGCM ENS Mean
E_' ﬁ.rchESWEﬂtth—HK" Fllangu Weather
' e ArchesWeather-L
AT - S 0T 7~ ArchesWeathier-M == == e MREE
i\ P
f ?ﬁvﬂ\/\ﬁ R \ u¥ _ uEs_r 5 ArchesWeather-S
)= LS 2010-2019 E F Y ;
=" w —10 & Spherical CNN
S
o
o =15 1
=
. ©
-0.5 T .' T T T T T T T T 1 &J‘ =20 1 'KE|S1E?'GNN
1980 1990 2000 2010 2020 v T " — T — T T a T T -
_ , , 10! 10? 10° 10° 10°
[European Center for Medium Range Weather Forecasting (ECMWF) website] Training Budget (V100 days)

[Couairon et al., 2024]



Lighter-weight Al weather forecasting

[Couairon et al., ArchesWeather: an efficient Al weather model at 1.59 resolution,

ICML 2024 workshop on Earth System Modeling]

Pangu-Weather: A 3D High-Resolution System for Fast and
Accurate Global Weather Forecast, Bi et al., Nature 2023

3D Earth-Specific Transformer

Layer 1 [ " Layer 4
| Earth-Specific Blockx2 [™1™1®| Earth-Specific Blockx2
| (8 x 360 % 181 x ) | | (B x360x 181 x ()

Upper-air Variables 8 ¢ ¢ Upper-air Variables
(13 X 1440 X 721 x 5) § down-sampling} : up-sampling : (13 % 1440 X 721 X 5)
@ - v__ D SO

' Layer 2 [ Layer 3 el
Earth-Specific Blockx6 ""_" Earth-Specific Block X6 — ‘.' 4%4
L__(Bx180x91x20) | | (Bx180x91x2C) | RS Patch =
Recovery PEEESSCTNNE
o
Encoder Decoder -—
Surface Variables ; Surface Variables
(1440 x 721 x 4)

(1440 x 721 x 4)

New in ArchesWeather:

- Train at courser data resolution
- Replace 3D attention with:

Il

2D attention windows 1D column attention

latitude + altitude 44
longitude



Lighter-weight Al weather forecasting

Relative RMSE improvement over IFS HRES (%)

15 4

10 4

_1[]-.

=15 4

@ FuXi

ArchesWeather-Mx4

ArchesWeather-L
ArchesWeather-M™ - B - B

®GraphCast g nauralGCM

@ stormer
Pangu-Weather

) NeuralGCM ENS Mean

IFS HRES

ArchesWeather-5
e Spherical CNN
{® Keister NN
10! 10¢ 10° 10° 10°

Training Budget (V100 days)

Ground truth

Deterministic Pred

Y

=

t
‘.

.

24h lead time Q700 forecast
init date: 28 sept 2019

e Deterministic prediction shows unrealistic smoothing
 Tryensemble generation via diffusion training

* Goal: each sampled member should be more physical
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Generative Al for weather and climate

Ensemble forecast generation

a

Multivariate emulation of kilometer-scale numerical weather predictions with generative adversarial
networks : a proof-of-concept. C. Brochet, L. Raynaud, N. Thome, M. Plu et C. Rambour, Artificial
Intelligence for the Earth Systems, 2023

GenCast: Diffusion-based ensemble forecasting for medium-range weather, Price et al., 2023

Leveraging deterministic weather forecasts for in-situ probabilistic temperature predictions via deep
learning. David Landry, Anastase Charantonis, and Claire Monteleoni. Monthly Weather Review, 2024

ArchesWeather: an efficient Al weather model at 1.52 resolution. Guillaume Couairon, Anastase
Charantonis, Christan Lessig, and Claire Monteleoni. In preparation. Preliminary results in ICML 2024
workshop on Earth System Modeling

Diffusion-based ensemble generation for emulating climate models at decadal time scales. Graham
Clyne, Guillaume Couairon, Anastase Charantonis, Guillaume Gastinau, Juliette Mignot, and Claire
Monteleoni. Work in progress
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Predictors Model
— )
NWP Linear Model
dependent
X OR
NWP Neural Network
independent

Linear Model Station

g

Lead time

Linear

Linear

24h

Probabilistic ensemble generation from a single
':Q reca St [Landry, Charantonis & Monteleoni. Monthly Weather Review, 2024]

Uncertainty representation

Py
Determ. | Normal !
I I
0 I OR I
Bernstein | Quantile |
— /E/ :

Neural network
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CYVR
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48h
72h
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Data from METAR: 1066 weather stations

Probabilistic prediction skill score

CRPSS (vs. Naive)

Probabilistic ensemble generation from a single
':Q reca St [Landry, Charantonis & Monteleoni. Monthly Weather Review, 2024]

Mean forecast error

Bias (K)

0.200
0.175 +
0.0 A
0.150 o
—0.1 A
0.125 o
0.100 + —0.2 A

m

I I 1 I 1 1 1 I 1
2 3 45 6 7 8 910
Lead time (days)

|_I_

I 1 I 1 1 1 I 1 1 1
1 2 3 45 6 7 8 910
Lead time (days)

Model

EMOS
BQN
QRN
DRN
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ArchesWeather with generative training

[Couairon et al., ArchesWeather: an efficient Al weather model at 1.52 resolution, manuscript]

Backbone: ArchesWeather variant
of Swin U-Transformer; 44M
parameters

Trained with Flow Matching

Inference done with 25 sampling
steps per 24 hours

Roll-outs done via one sample
each 24 hours. Input this output
into trained model and repeat.

Conditioning

Ground truth

L |
&

S

Sample 2

v, J
I -
|

Deterministic Pred

0.010

0.005

Specific Humidity (kg/kg)



Flow Matching vs. Diffusion

FLOW MATCHING FOR GENERATIVE MODELING

Yaron Lipman'? Ricky T. Q. Chen' Heli Ben-Hamu? Maximilian Nickel'! Matt Le'
Meta AI (FAIR) 2Weizmann Institute of Science

Intuition: Make straighter paths between data samples and noise samples

e\

Diffusion OoT

Results: Straighter paths in the probability flows, allowing us to sample in fewer diffusion steps
— Speed-ups



A sample trajectory

850hPa Temperature Title 850hPa Wind
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Ensemble member diversity; lead-time 10 days
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