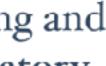
Understanding Emergent Structure in Large Language Models

Ellie Pavlick, November 25, 2024

Language Understanding and **Representation Laboratory**



The neuro-symbolic tug-of-war

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

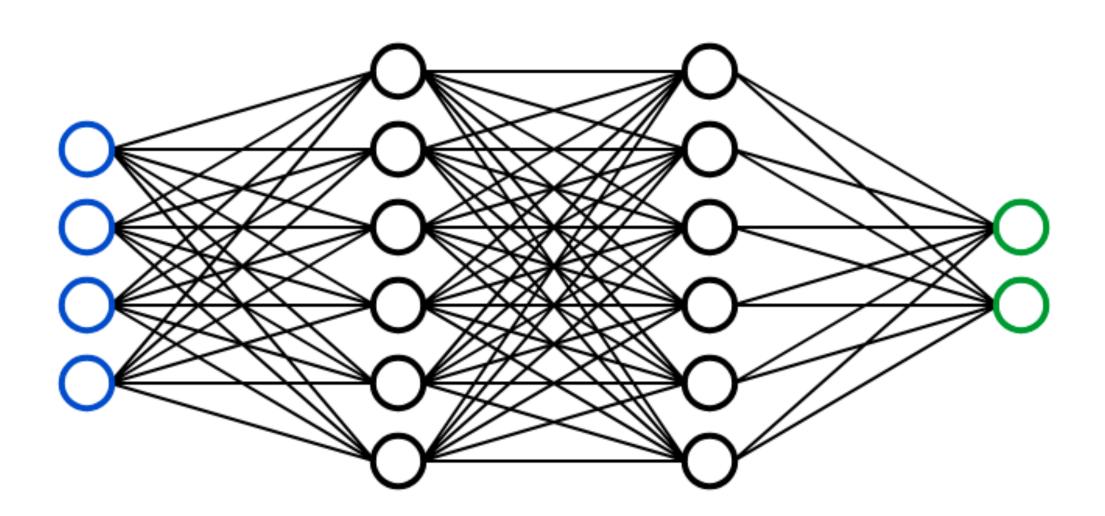
Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com



ic tug-of-war

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

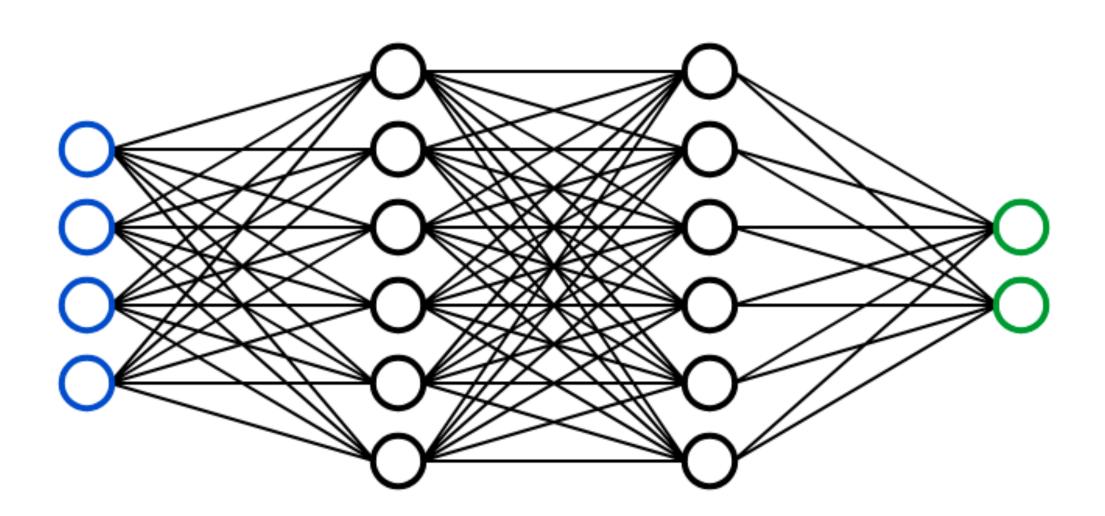
Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com



ic tug-of-

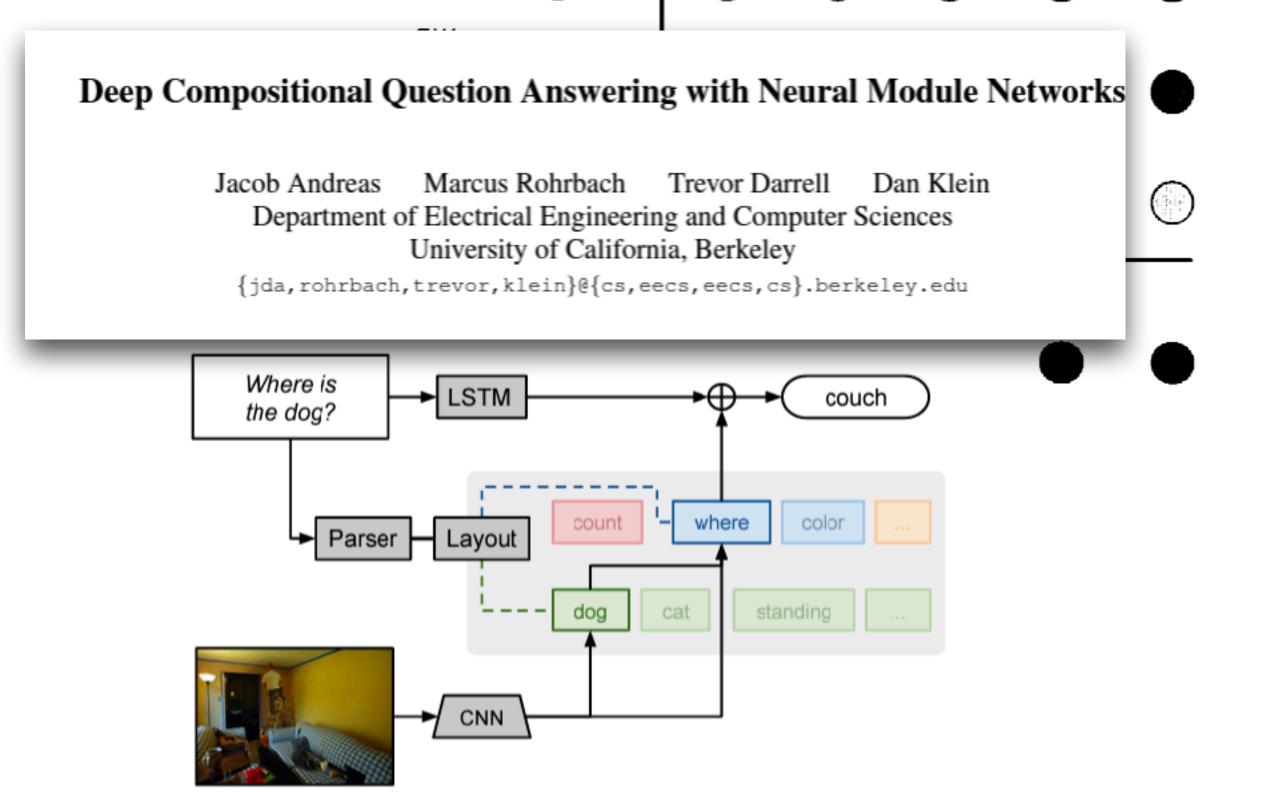
Tensor Product Variable Binding and the Representation of Symbolic **Structures in Connectionist Systems**

Paul Smolensky

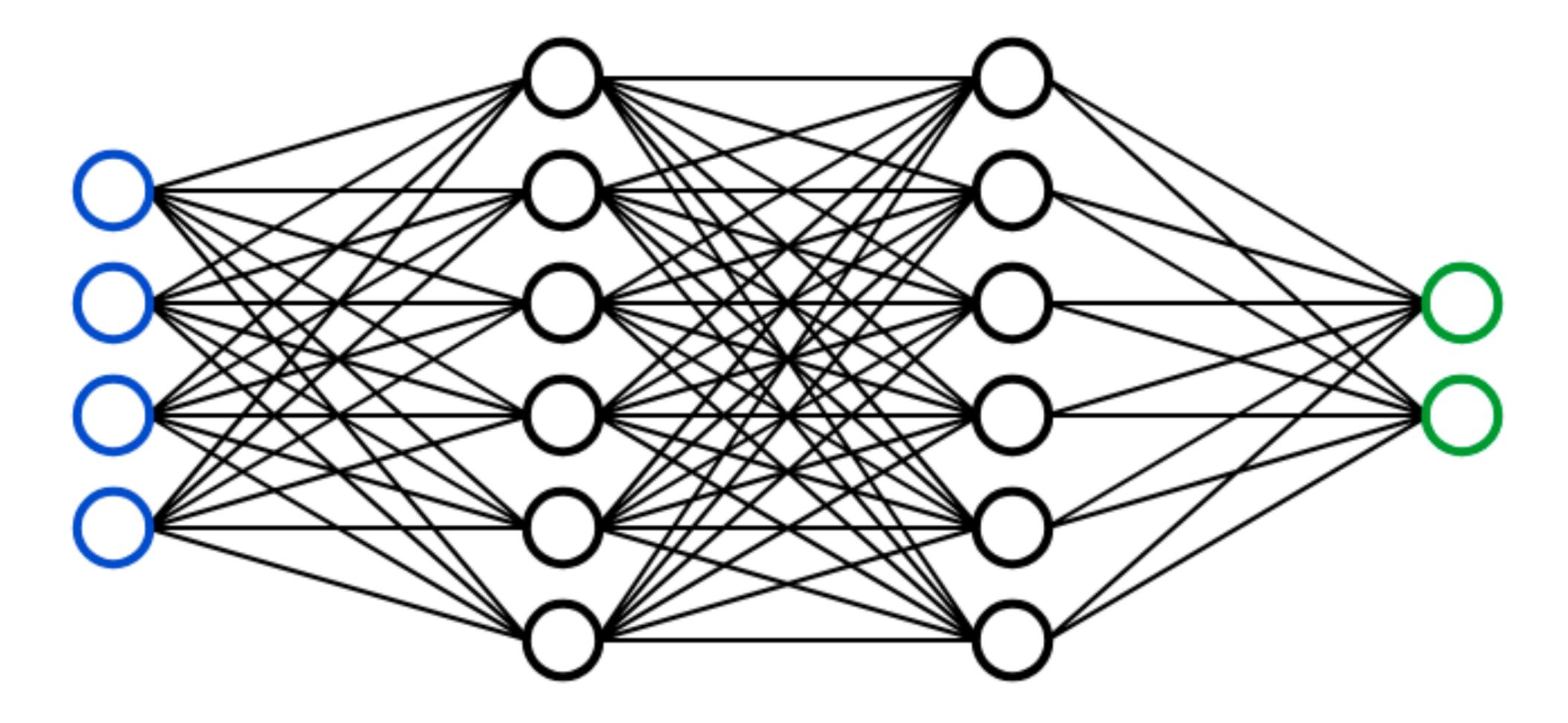
22

a Nie. Vier

Department of Computer Science and Institute of Cognitive Science, University of Colorado, Boulder, CO 80309-0430, USA



Transformers aren't just webs of associations

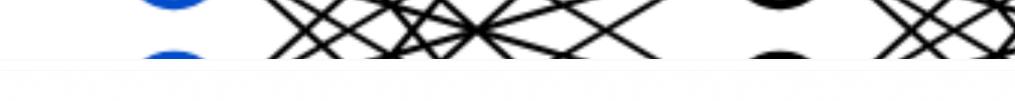


Transformers aren't just webs of associations

Transformer Feed-Forward Layers Are Key-Value Memories

Mor Geva^{1,2} Roei Schuster^{1,3} Jonathan Berant^{1,2} Omer Levy¹ ¹Blavatnik School of Computer Science, Tel-Aviv University ²Allen Institute for Artificial Intelligence ³Cornell Tech

{morgeva@mail, joberant@cs, levyomer@cs}.tau.ac.il, rs864@cornell.edu



INTERPRETABILITY IN THE WILD: A CIRCUIT FOR INDIRECT OBJECT IDENTIFICATION IN GPT-2 SMALL

Kevin Wang¹, Alexandre Variengien¹, Arthur Conmy¹, Buck Shlegeris¹ & Jacob Steinhardt^{1,2} ¹Redwood Research ²UC Berkeley kevin@rdwrs.com, alexandre@rdwrs.com, arthur@rdwrs.com, buck@rdwrs.com, jsteinhardt@berkeley.edu

In-context Learning and Induction Heads

AUTHORS

Catherine Olsson*, Nelson Elhage*, Neel Nanda*, Nicholas Joseph[†], Nova DasSarma[†], Tom Henighan[†], Ben Mann[†], Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, Chris Olah^{*}

AFFILIATION Anthropic

PUBLISHED

Mar 8, 2022

* Core Research Contributor; * Core Infrastructure Contributor; * Correspondence to colah@anthropic.com; Author contributions statement below

Locating and Editing Factual Associations in GPT

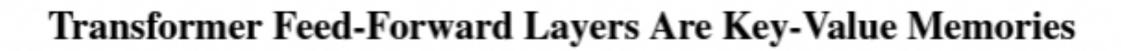
Kevin Meng* MIT CSAIL

David Bau* Northeastern University

MIT CSAIL

Alex Andonian Yonatan Belinkov[†] Technion - IIT

Transformers aren't just webs of associations



Mor Geva^{1,2} Roei Schuster^{1,3} Jonathan Berant^{1,2} Omer Levy¹ ¹Blavatnik School of Computer Science, Tel-Aviv University

INTERPRETABILITY IN THE WILD: A CIRCUIT FOR INDIRECT OBJECT IDENTIFICATION IN GPT-2 SMALL

Interpretable algorithms playing out over layers

In-context Learning and Induction Heads

Read-Write

* Core Research Contributor; * Core Infrastructure Contributor; * Correspondence to colah@anthropic.com; Author contributions statement below.

Locating and Editing Factual Associations in GPT

Why care about what's inside the black box?

- 1. Curiosity :)
- things might go wrong
- results more quickly, reliably, cheaply
- 5. Cognitive, Linguistic, Neuro-Science Al could serve as a source of new

2. Safety — Understanding the "source code" can help us anticipate when and how

3. Theory — Boiling LLMs down into computational building blocks might enable us to develop more principled mathematical theories of representations and learning

4. Engineering — Knowing how things work could allow us to acheive the same

hypotheses and theories about the nature of language and cognition in general

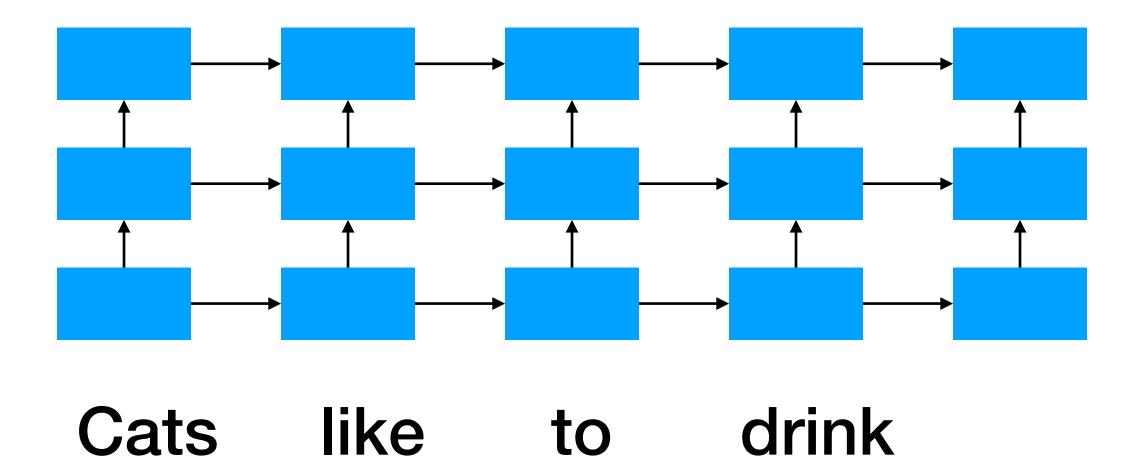
This Talk

- Transformers and the "Mental Model of LLMs"
- Two Proofs of Concept:
 - Abstract representation of relations
 - Modular and reusable algorithmic "building blocks"

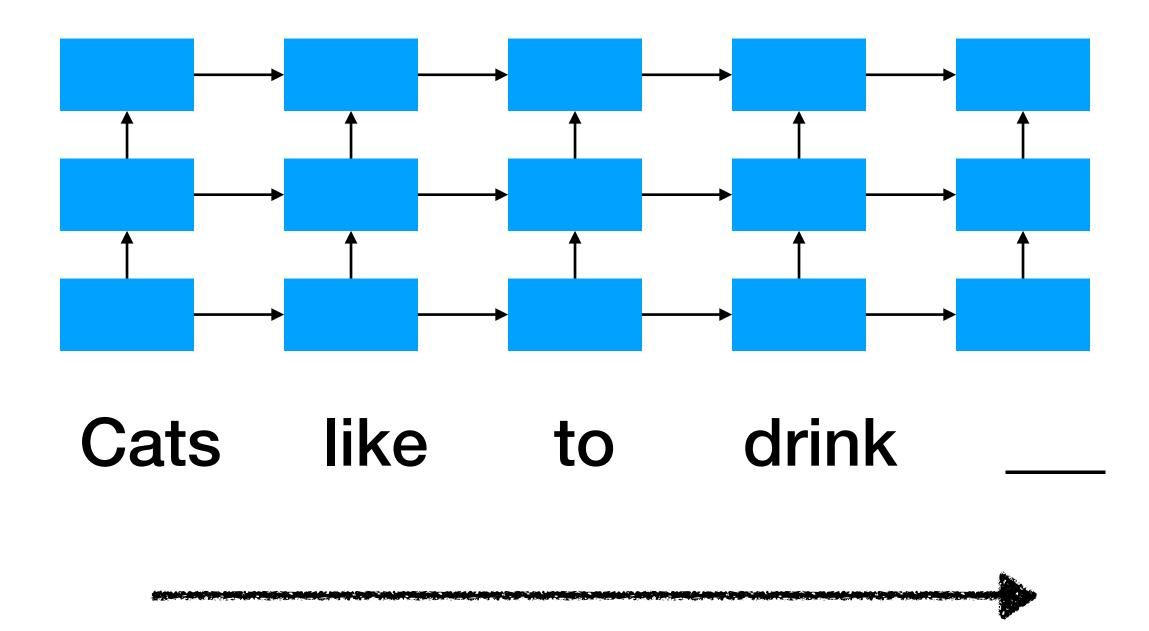
This Talk

- Transformers and the "Mental Model of LLMs"
- Two Proofs of Concept:
 - Abstract representation of relations
 - Modular and reusable algorithmic "building blocks"

Recurrent Neural Network



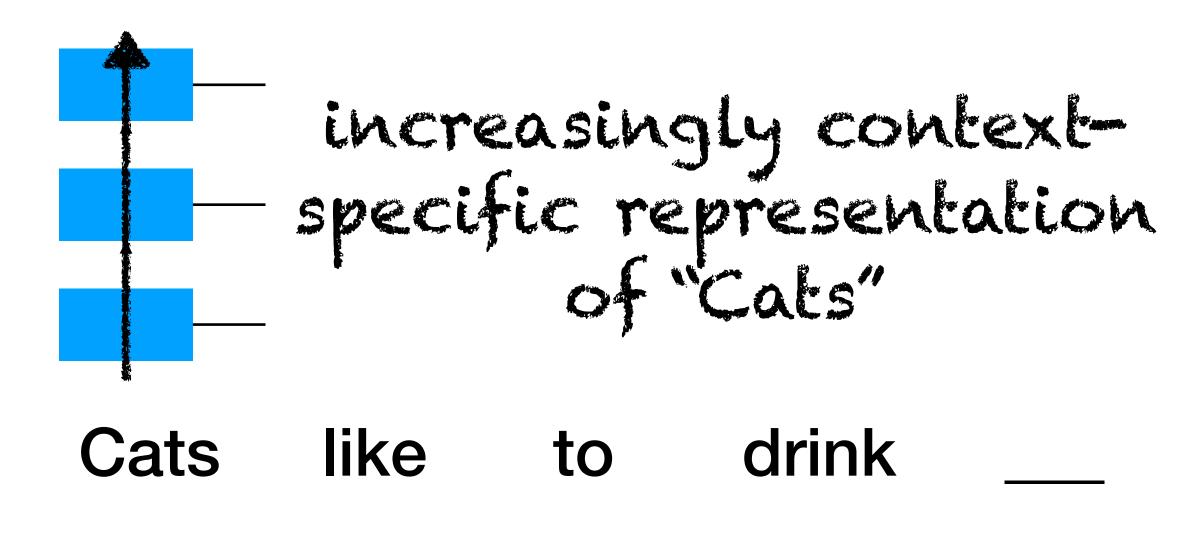
Recurrent Neural Network



end

Assumption #1: (Compute) time goes left to right

Recurrent Neural Network

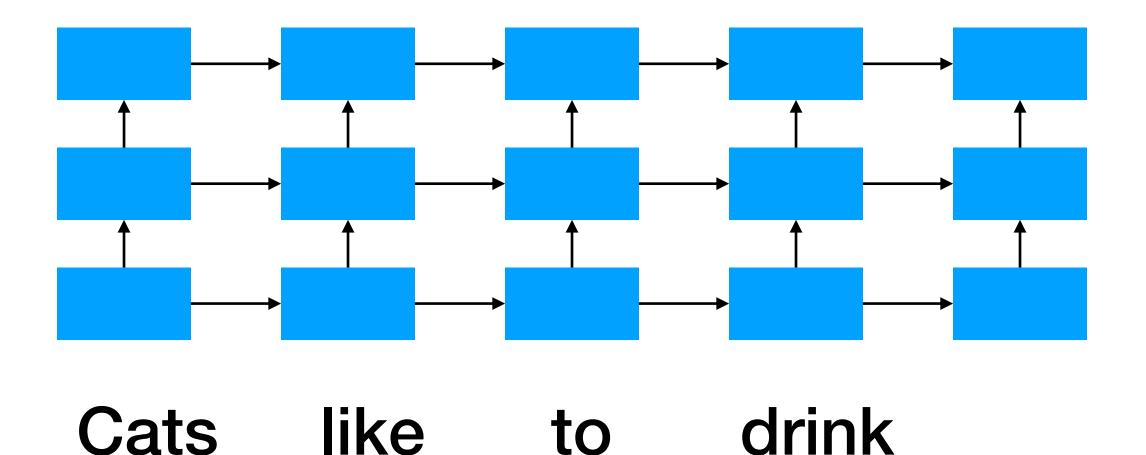


start

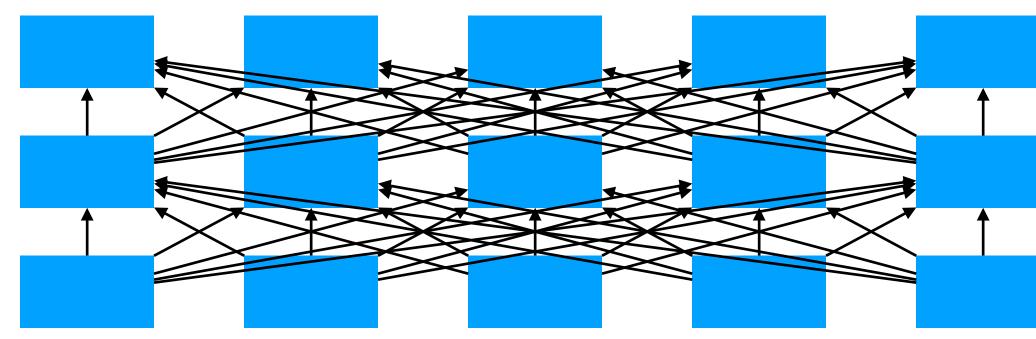
end

Assumption #2: Token embeddings represent words

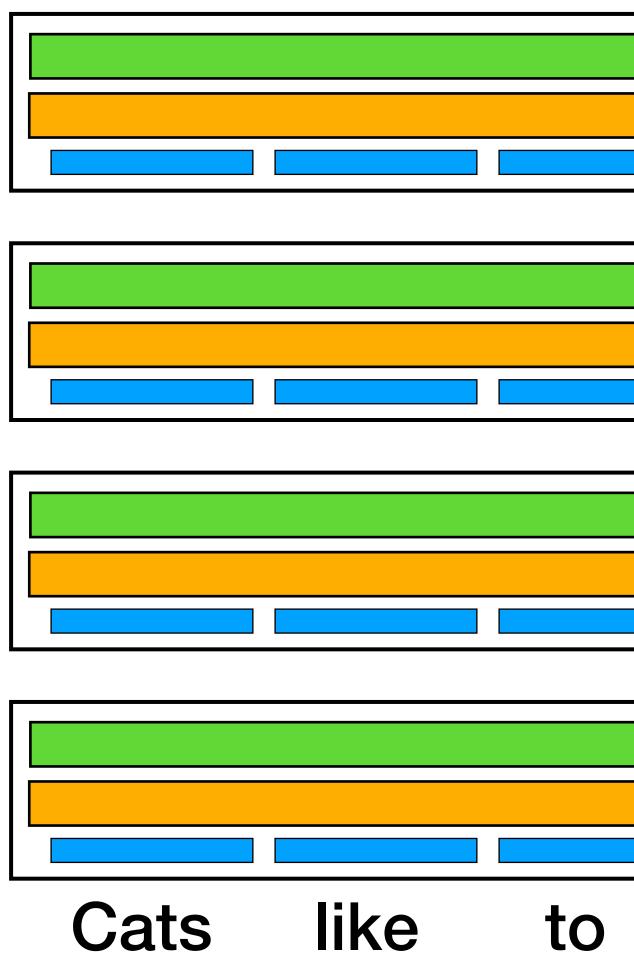
Recurrent Neural Network



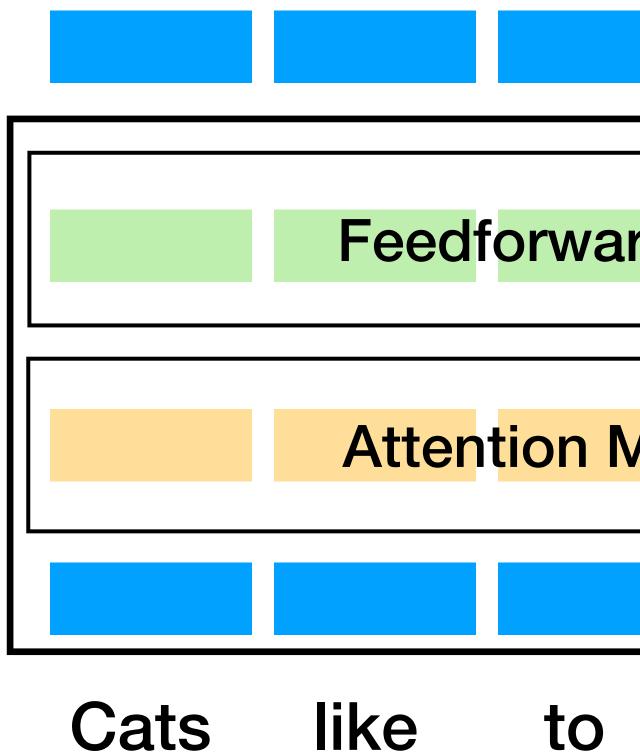
Transformer



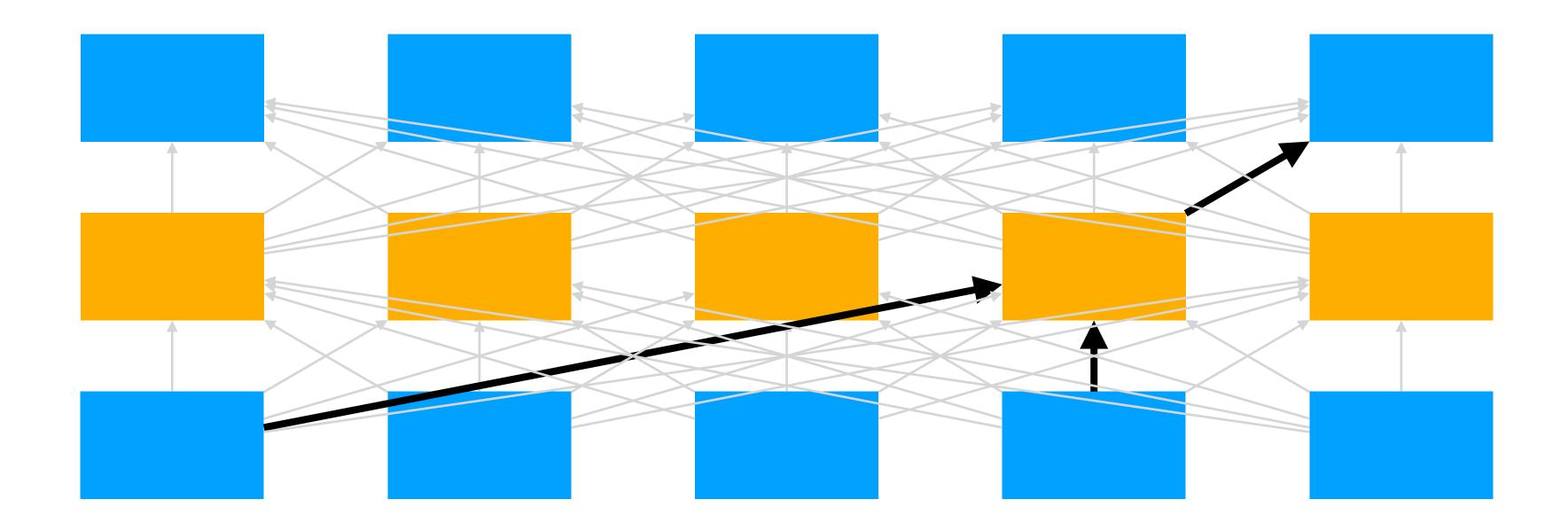
Cats like to drink



drink	

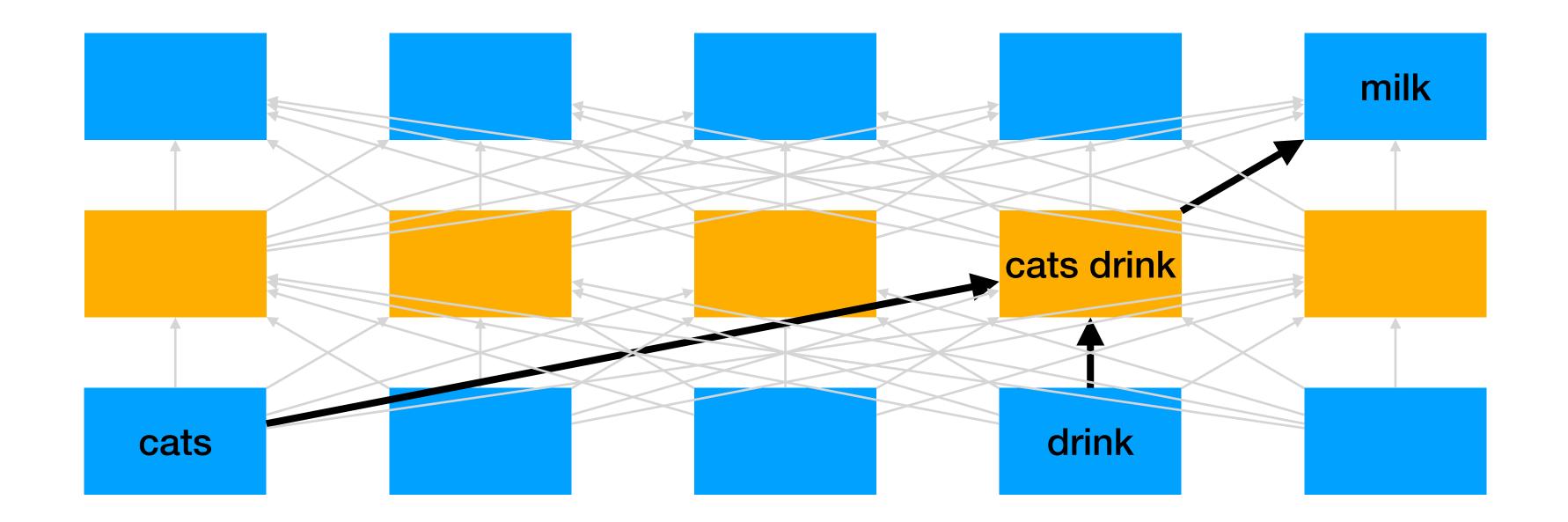


rd Network (FFN)	
Aechanism (Attn)	



like Cats

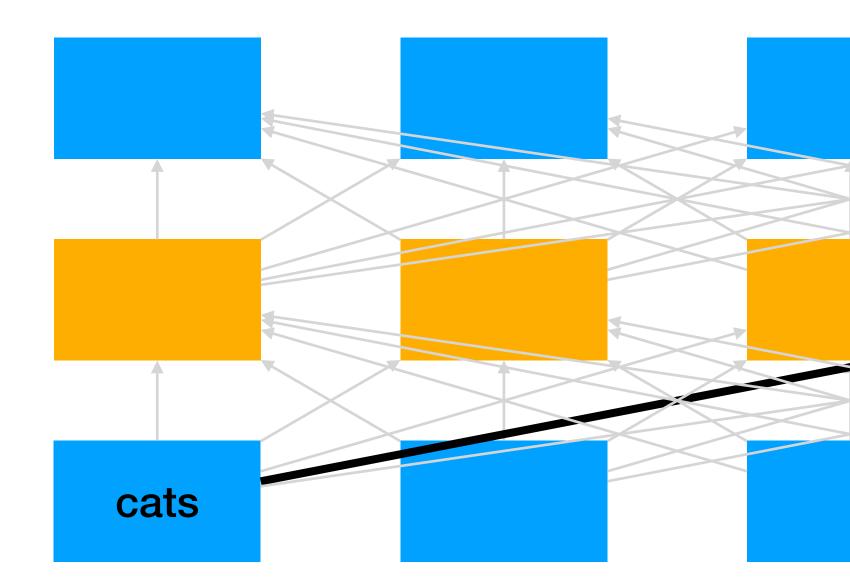
drink to



like Cats

Attention is a read-write mechanism. It reads from registers at one layer, and writes to registers in the next layer.

drink to



like Cats

Altention is a read-write mechanism. It reads from registers at one layer, and writes to registers in the next layer.

In-context Learning and Induction Heads

 Catherine Olsson*, Nelson Elhage*, Neel Nanda*, Nicholas Joseph†, Nova DasSarma†, Tom Henighan†, Ben Mann†, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown,
 Jack Clark, Jared Kaplan, Sam McCandlish, Chris Olah [‡]
* Core Research Contributor; * Core Infrastructure Contributor; * Correspondence to colah@anthropic.com; Author contributions statement below.

drink to

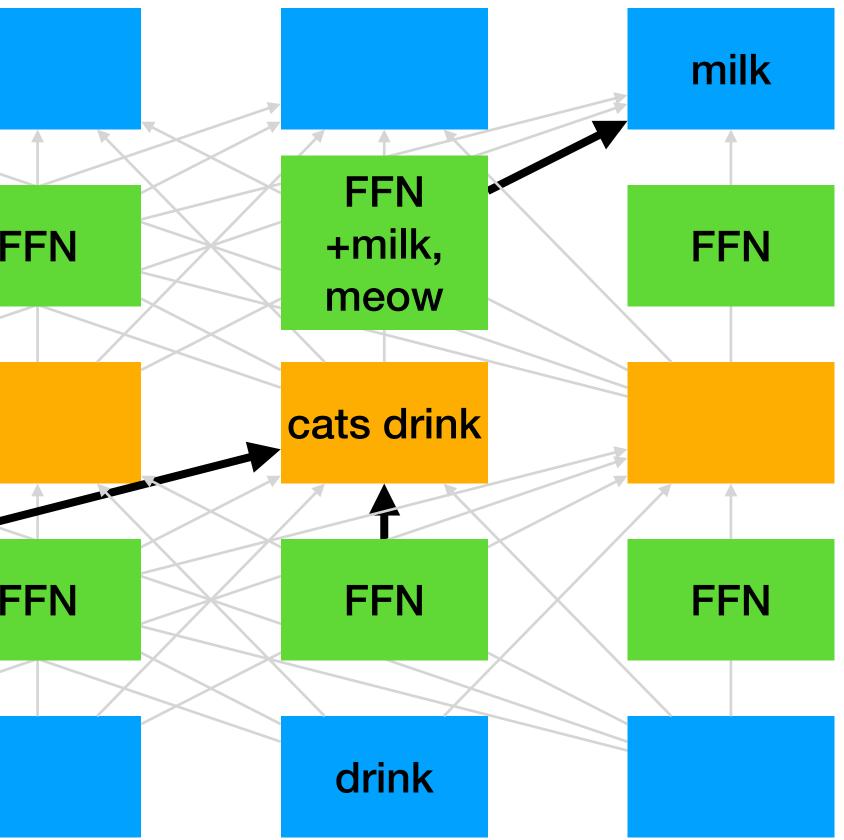
cats drink

drink

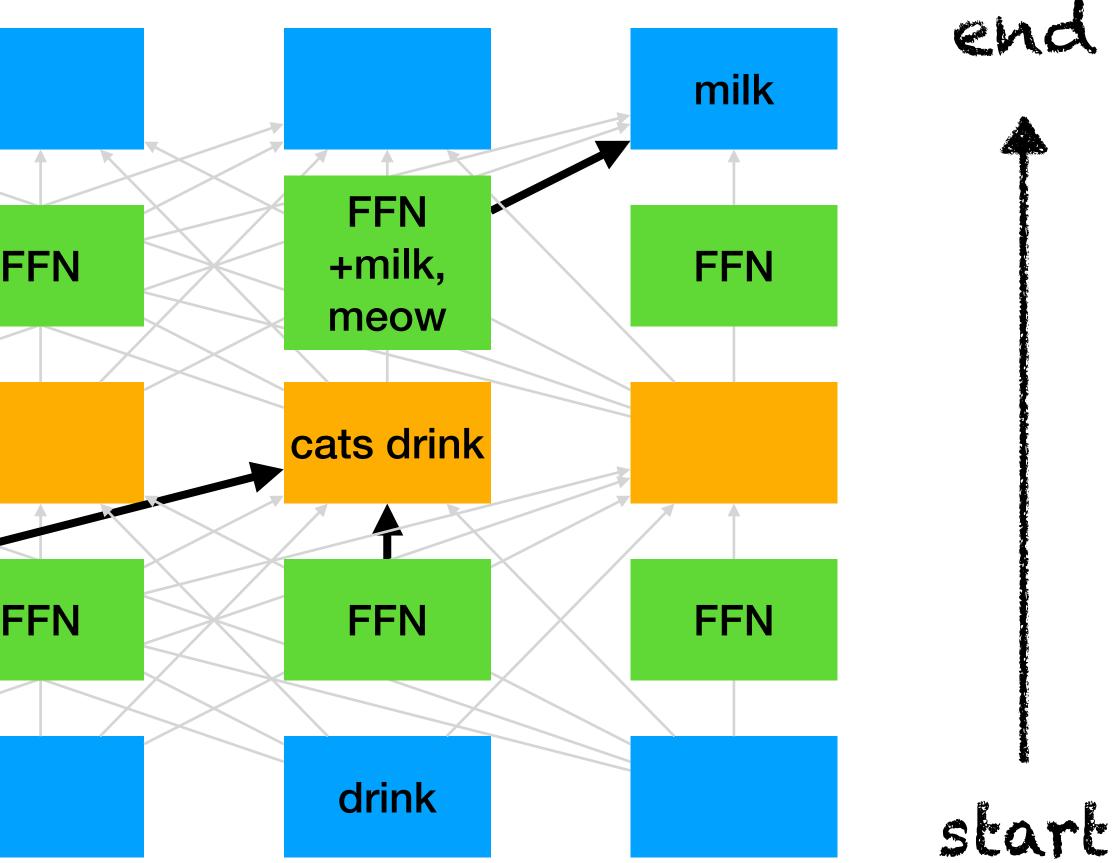
AFFILIATION Anthropic PUBLISHED Mar 8, 2022

Mental model of LLMs Transformer Archite **FFN** FFN FFN **FFN** FFN **FFN** cats

Feed forward nets pull in new "stuff". I.e., add info into the registers based on recall from training.



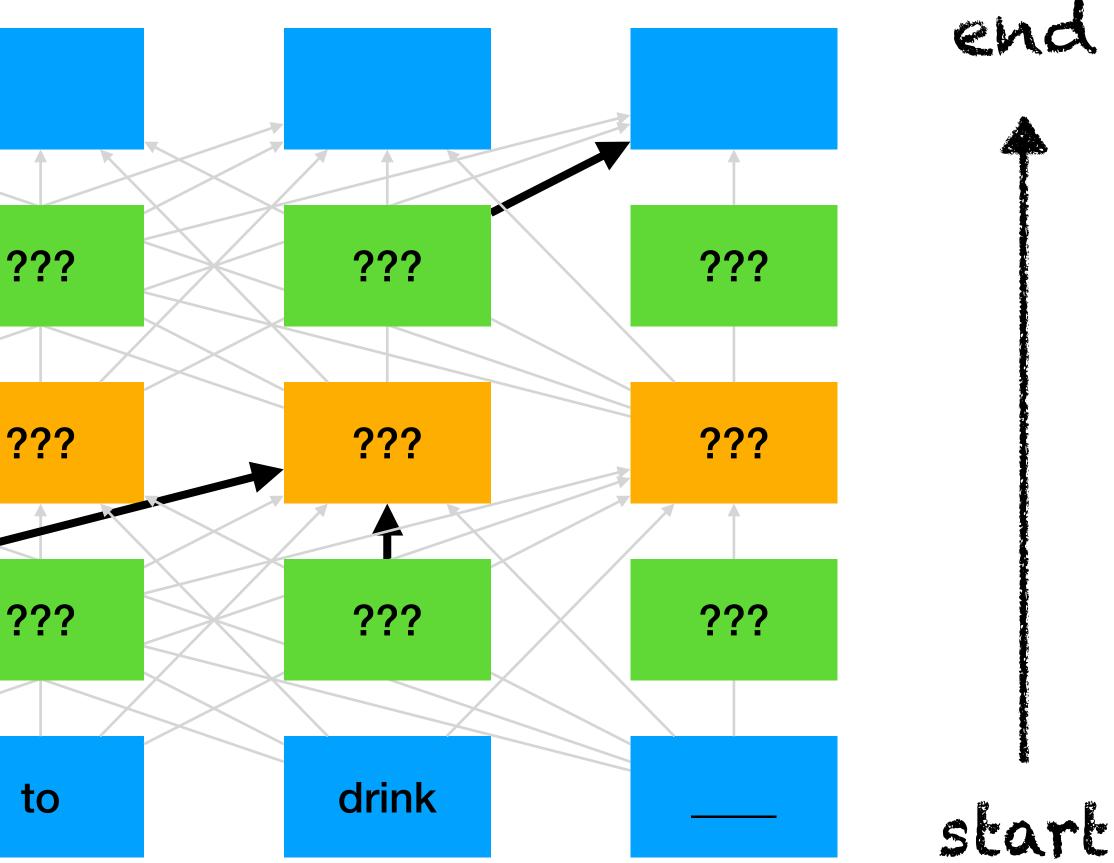
Mental model of LLMs Transformer Archite **FFN** FFN FFN FFN **FFN** FFN cats



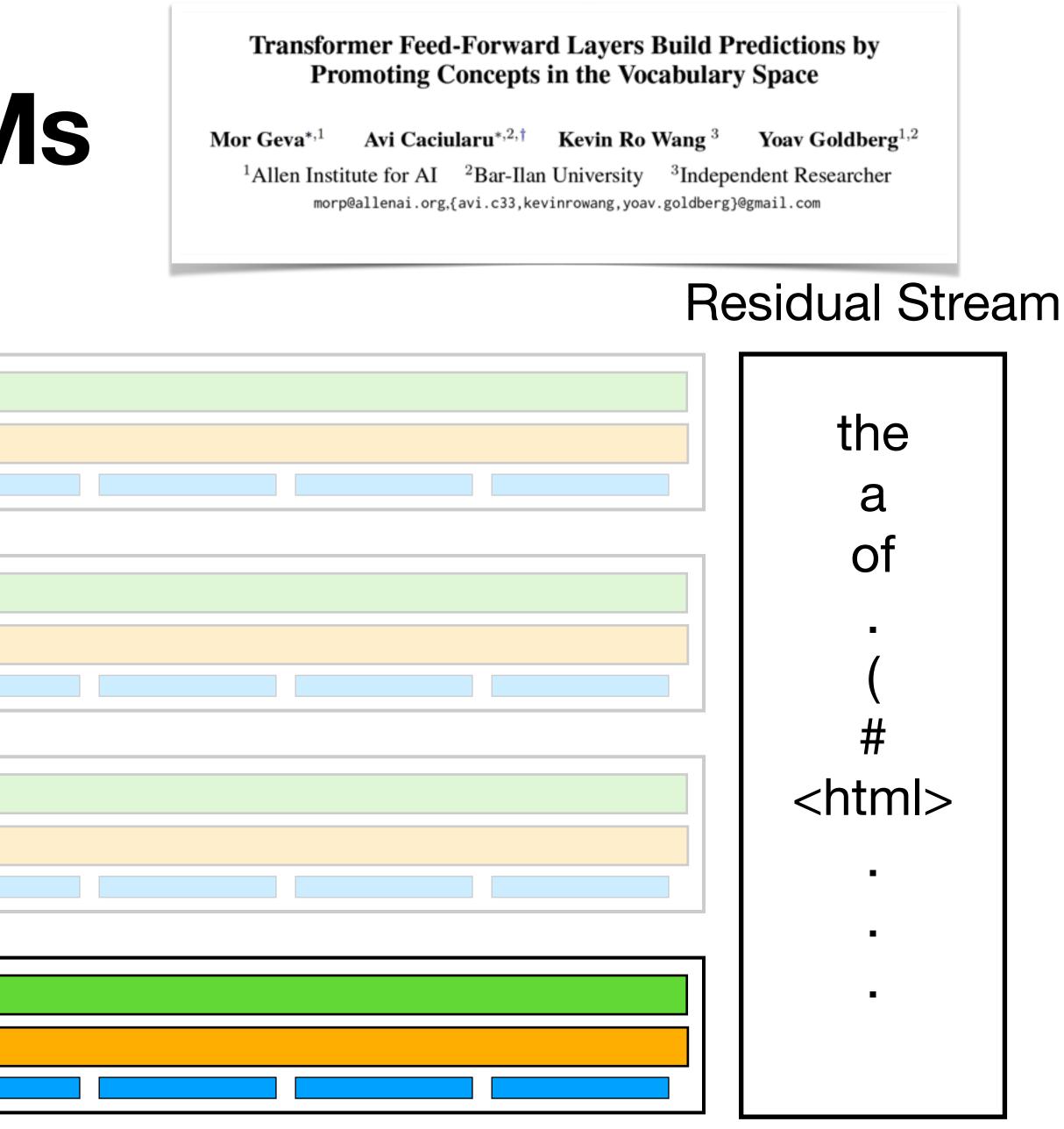
(Compute) time goes bottom to top

Mental model of LLMs Transformer Archite ??? ??? ??? ??? ??? ??? ??? ??? ??? like cats to

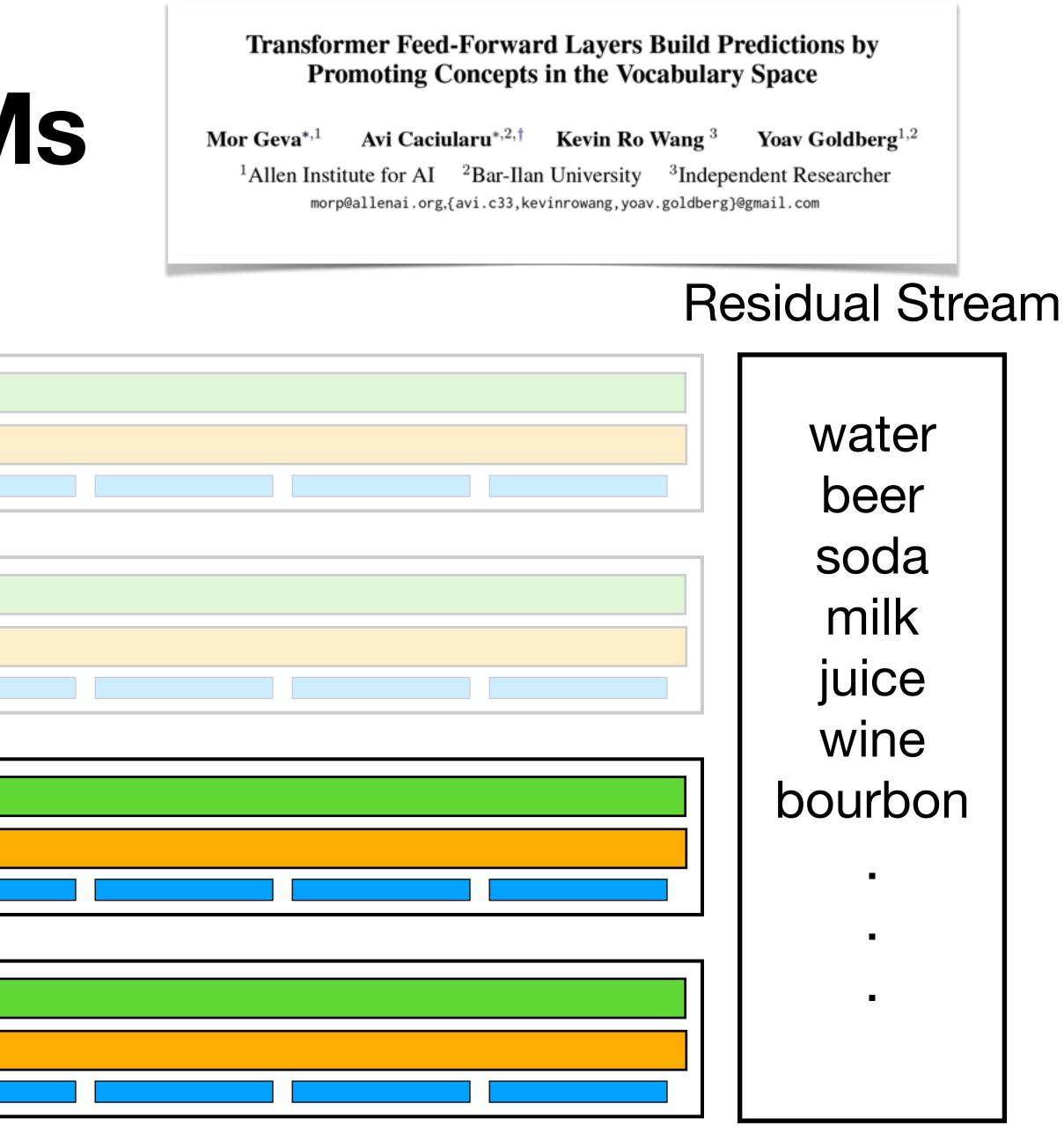
Register content can, in theory, be anything!



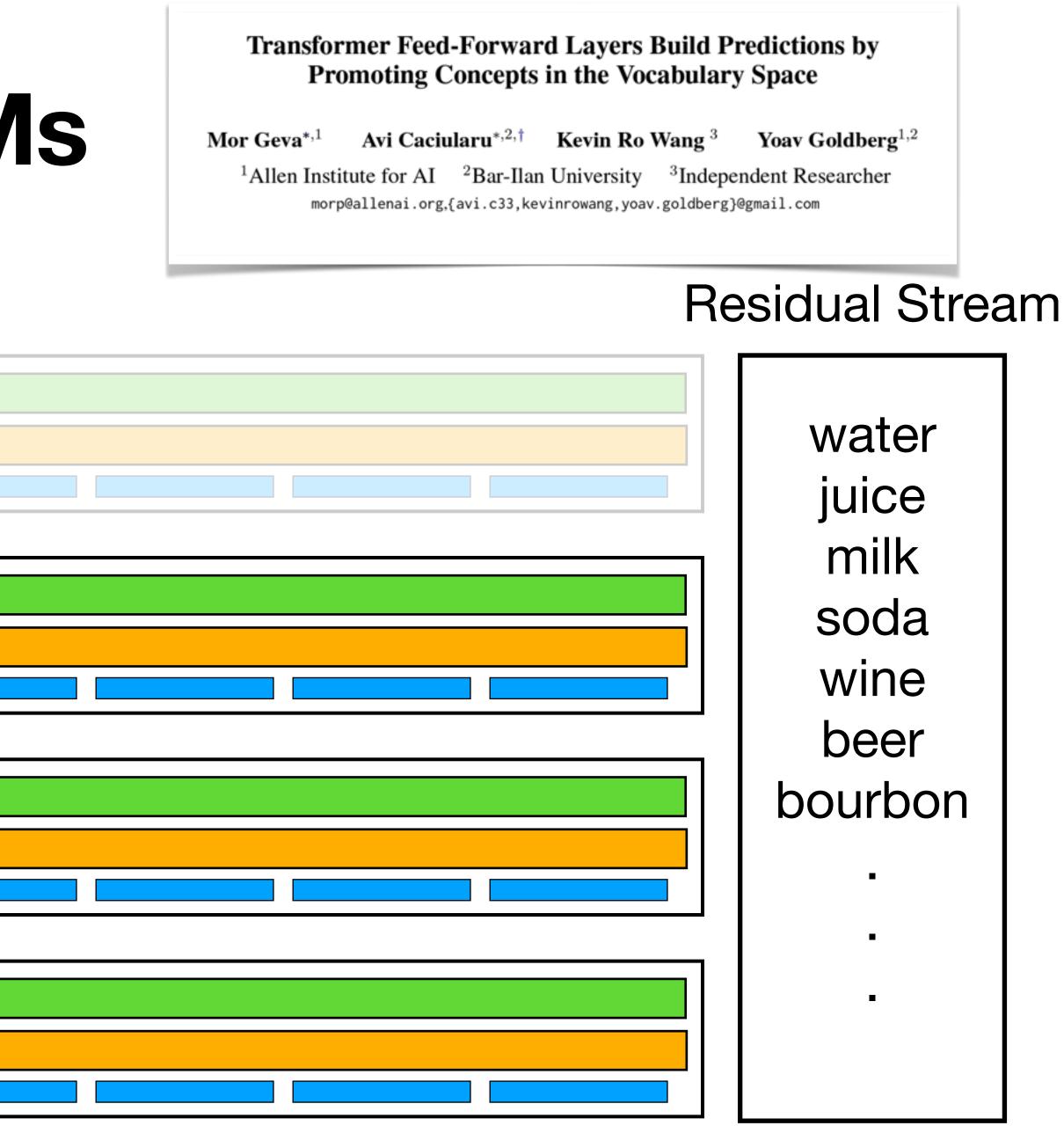
Mental model of LLMs Each Layer 'Architecture makes an intermediate update to the predicted next token in vocab space. This "residual stream" is the input to the next Layer. Cats like to



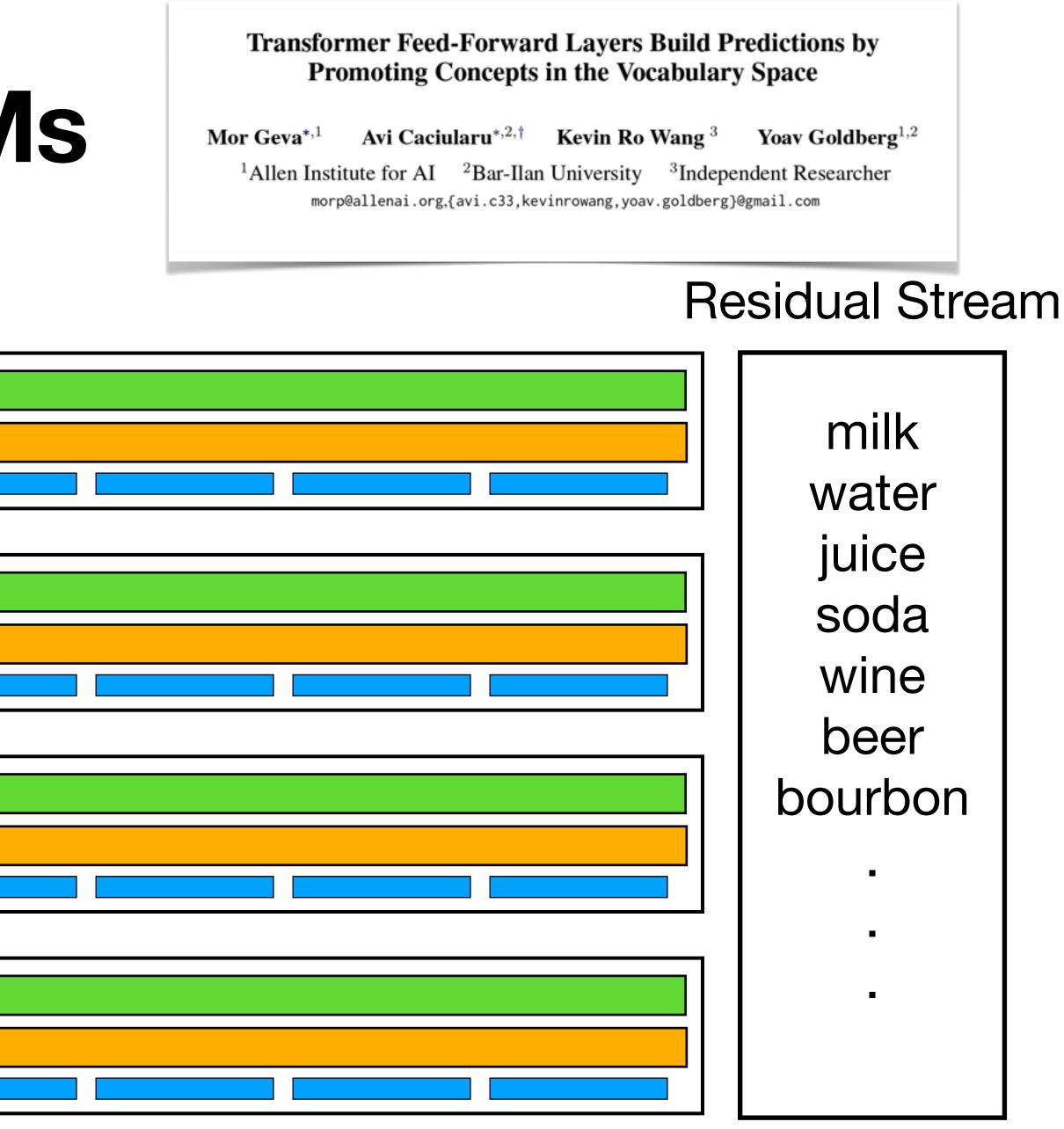
Mental model of LLMs Each Layer 'Architecture makes an intermediate update to the predicted next token in vocab space. This "residual stream" is the input to the next Layer. Cats like to



Mental model of LLMs Each Layer 'Architecture makes an intermediate update to the predicted next token in vocab space. This "residual stream" is the input to the next Layer. Cats like to



Mental model of LLMs Architecture Each layer makes an intermediate update to the predicted next token in vocab space. This "residual stream" is the input to the next Layer. Cats like to



Mental model of LLMs **Transformer Architecture Takeaways**

- Attention Heads carry out reads-and-writes across layers. Tokens can be viewed as arbitrary "registers".
- FFNs pull in new information from training (stuff not in local context).
- At each layer, we can get a kind of "print statement" showing the effect of these intermediate computations by looking at the effect on the residual stream

This Talk

- Transformers and the "Mental Model of LLMs"
- Two Proofs of Concept:
 - Abstract representation of relations
 - Modular and reusable algorithmic "building blocks"

Abstract Functions in LLMs

Jack Merullo

Carsten Eickhoff

Language Models Implement Simple Word2Vec-style Vector Arithmetic

Jack Merullo Department of Computer Science Brown University jack_merullo@brown.edu

Carsten Eickhoff

School of Medicine University of Tübingen carsten.eickhoff@uni-tuebingen.de

Ellie Pavlick

Department of Computer Science Brown University ellie_pavlick@brown.edu

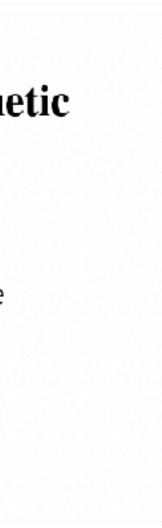
Characterizing Mechanisms for Factual Recall in Language Models

Qinan Yu

Jack Merullo

Ellie Pavlick

Brown University Department of Computer Science {qinan_yu,jack_merullo,ellie_pavlick}@brown.edu

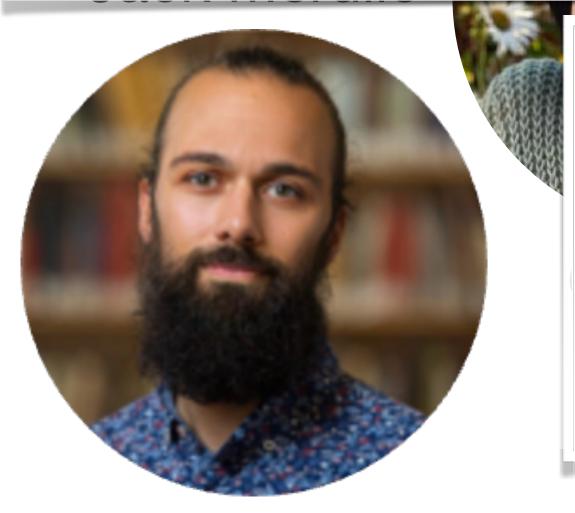


Abstract Functions in LLMs

In-Context Learning Creates Task Vectors

Roee Hendel Tel Aviv University roee.hendel@mail.tau.ac.il

Mor Geva Google DeepMind pipek@google.com



FUNCTION VECTORS IN LARGE LANGUAGE MODELS

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau Khoury College of Computer Sciences, Northeastern University

Carsten Eickhoff

Amir Globerson

Tel Aviv University, Google gamir@tauex.tau.ac.il

Word2Vec-style Vector Arithmetic

Carsten Eickhoff

School of Medicine University of Tübingen rsten.eickhoff@uni-tuebingen.de

lick hputer Science versity ₿brown.edu



Abstract Functions in LLMs Task Setup

What is the capital of France? Paris

What is the capital of Poland?

Warsaw

Abstract Functions in LLMs Possible Mechanisms

Possibility #1: Models use idiomatic word associations to determine the probability of the next word.

What is the capital of France? Paris

What is the capital of Poland? Warsaw

P(Warsaw) Poland &of & capital & ...of Poland &capital of & ...)

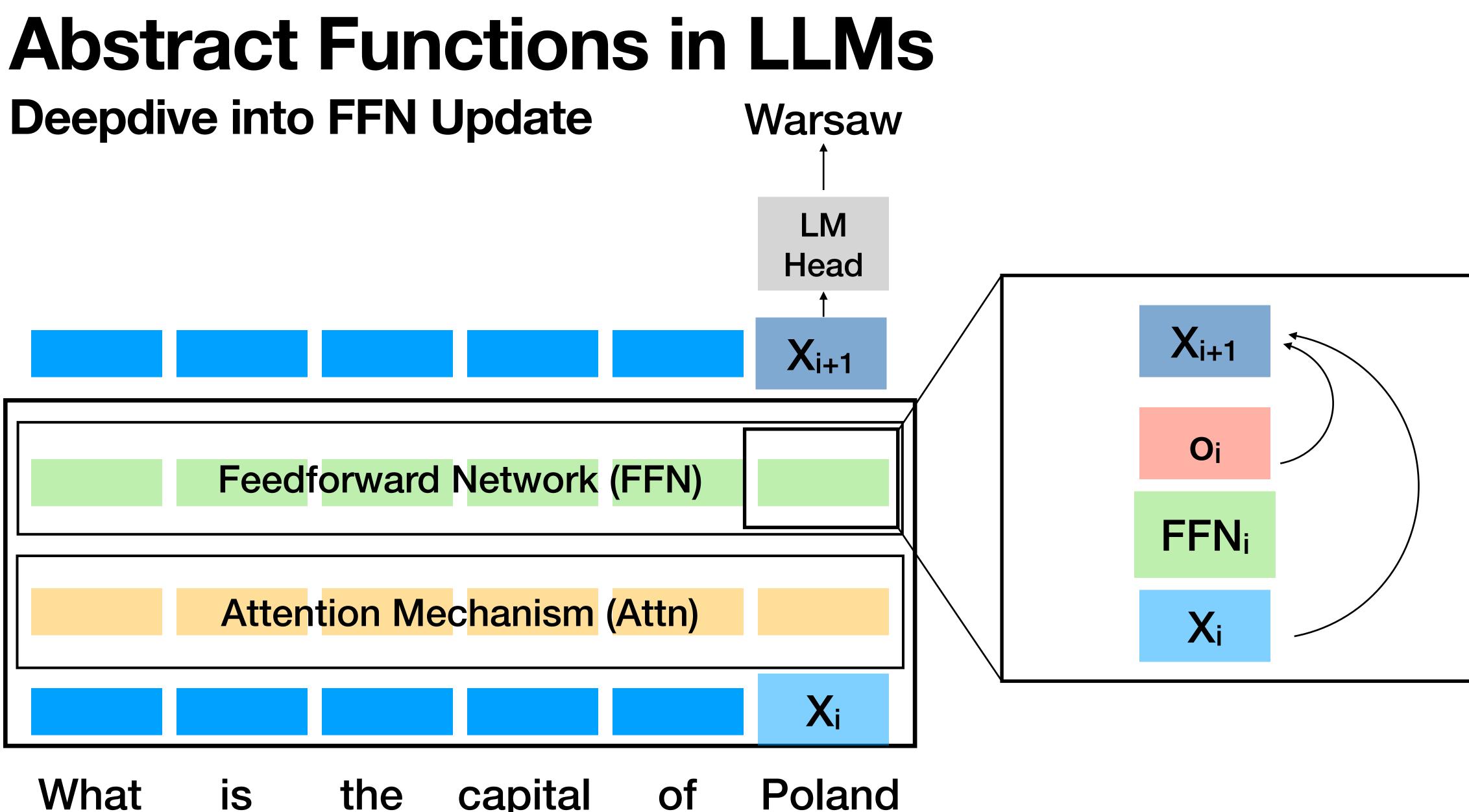
Abstract Functions in LLMs Possible Mechanisms

Possibility #2: Models infer an abstract function based on example, and then apply it to the input.

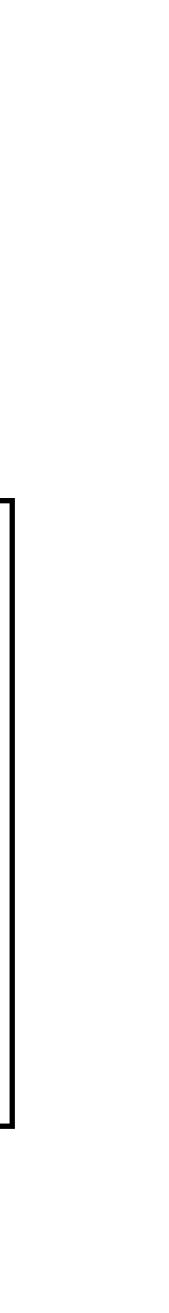
What is the capital of France? Paris

What is the capital of Poland?

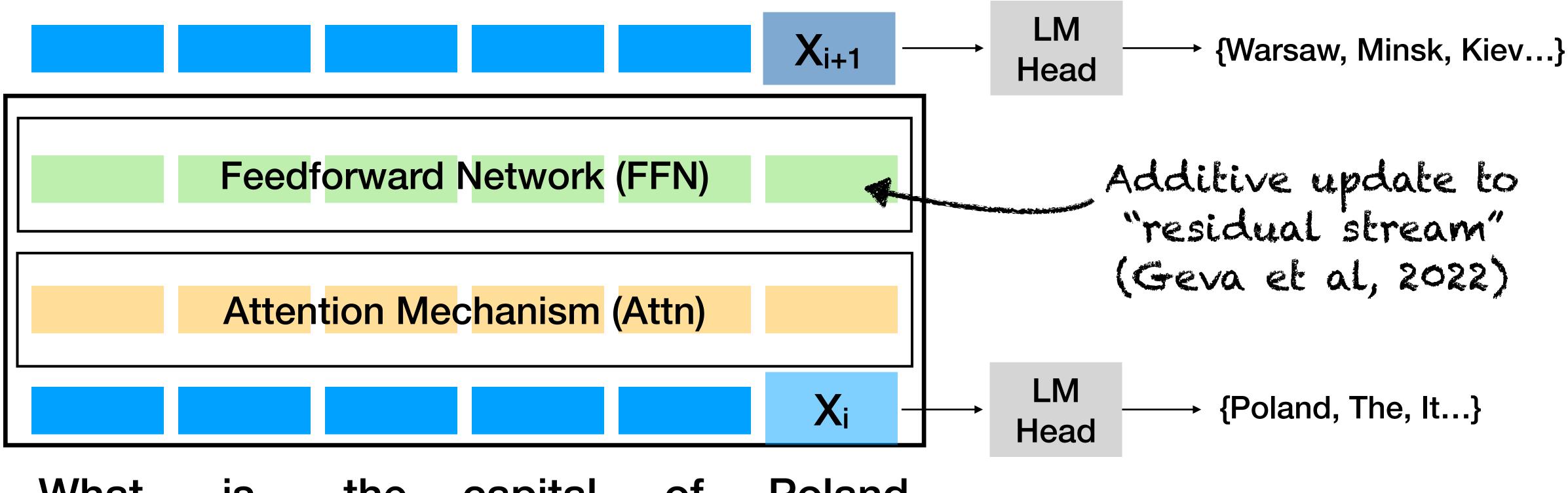
f | f(France) = Paris f(Poland) = Warsaw



is the capital of



Abstract Functions in LLMs Deepdive into FFN Update



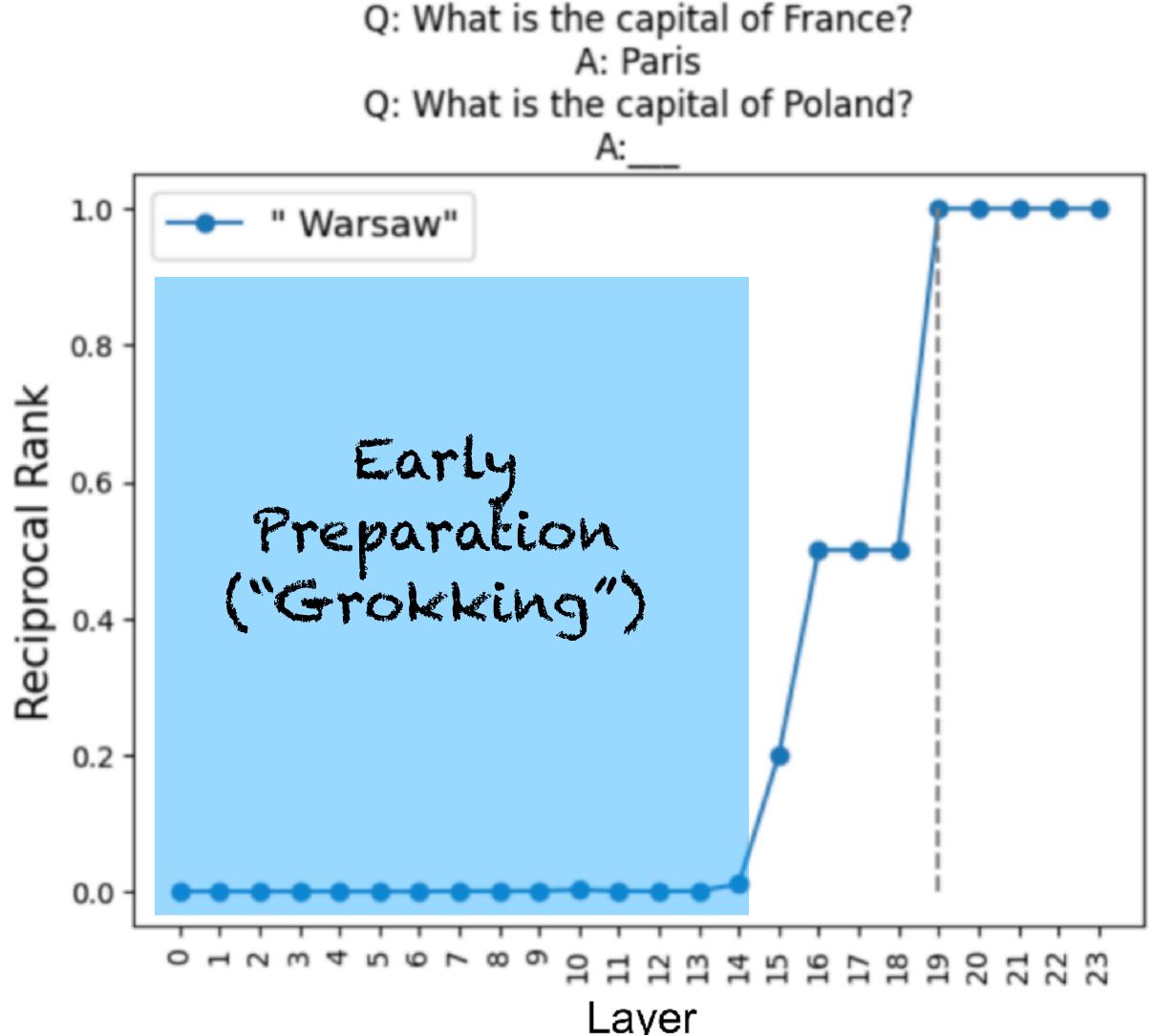
What is the capital of

Poland

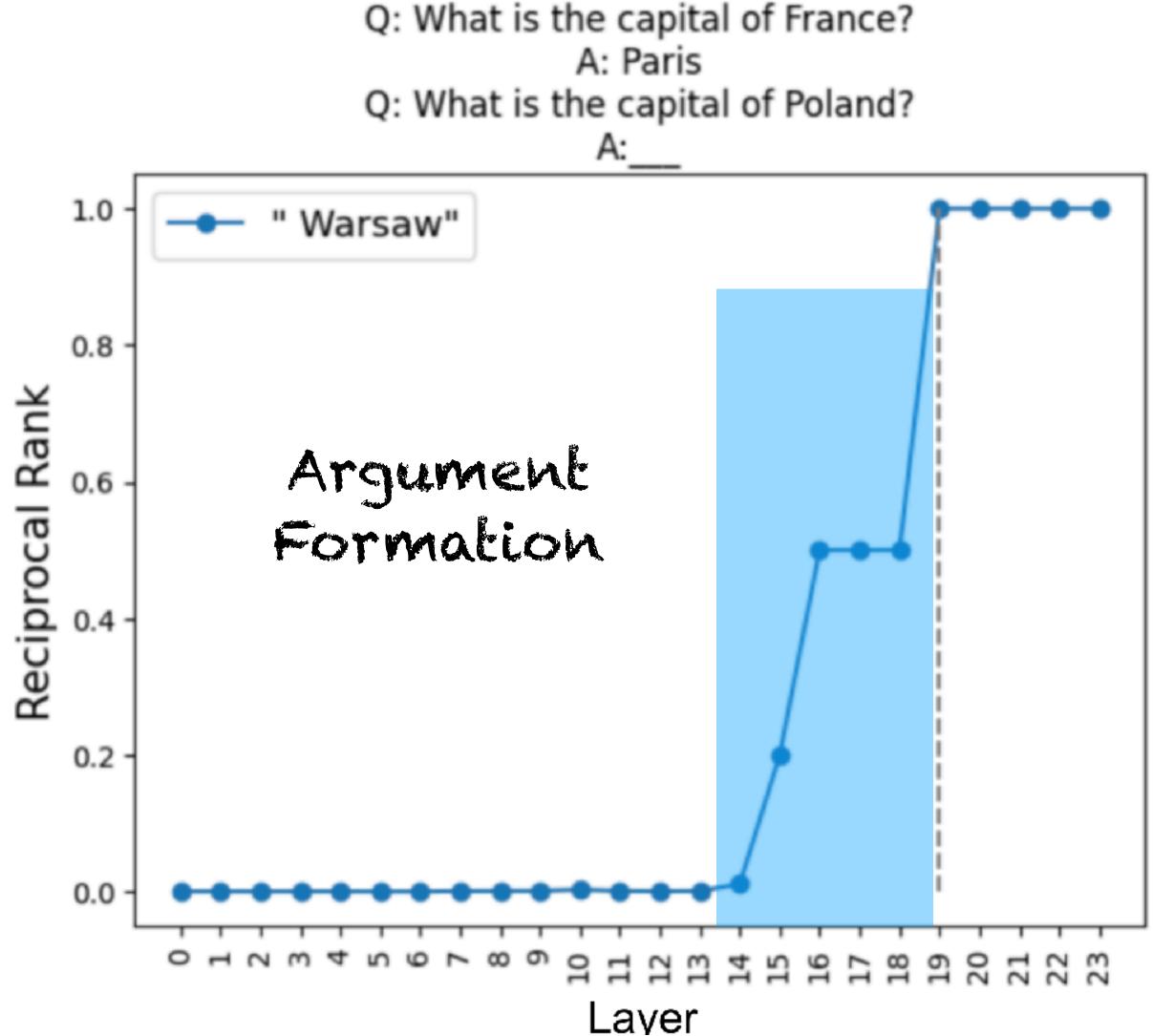


Q: What is the capital of France?

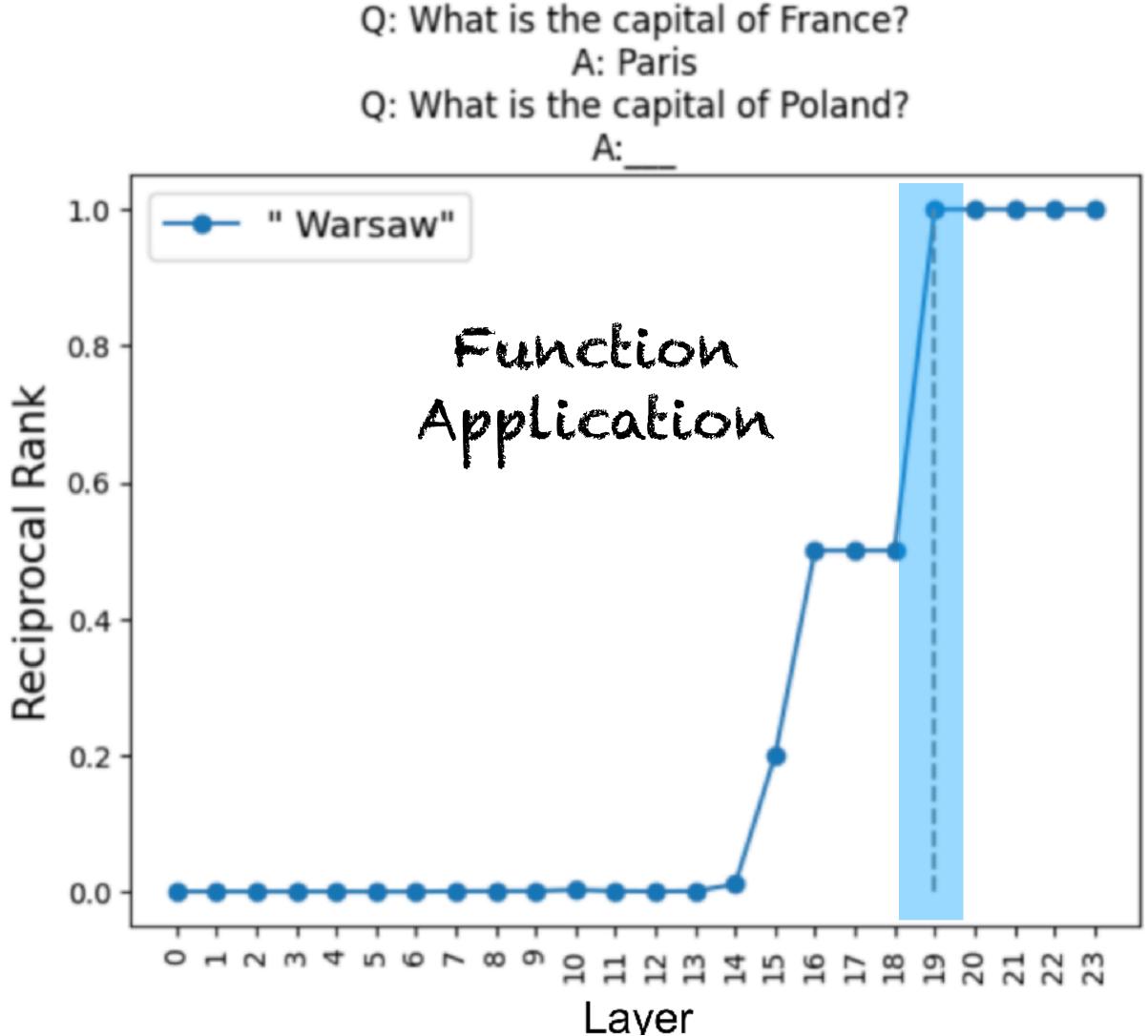
Layer	Top Token
0	(
1	Α
2	Α
3	Α
4	Α
5	Α
6	No
7	С
8	Α
9	Α
10	Α
11	Α
12	Unknown
13	С
14	St
15	Poland
16	Poland
17	Poland
18	Poland
19	Warsaw
20	Warsaw
21	Warsaw
22	Warsaw
23	Warsaw



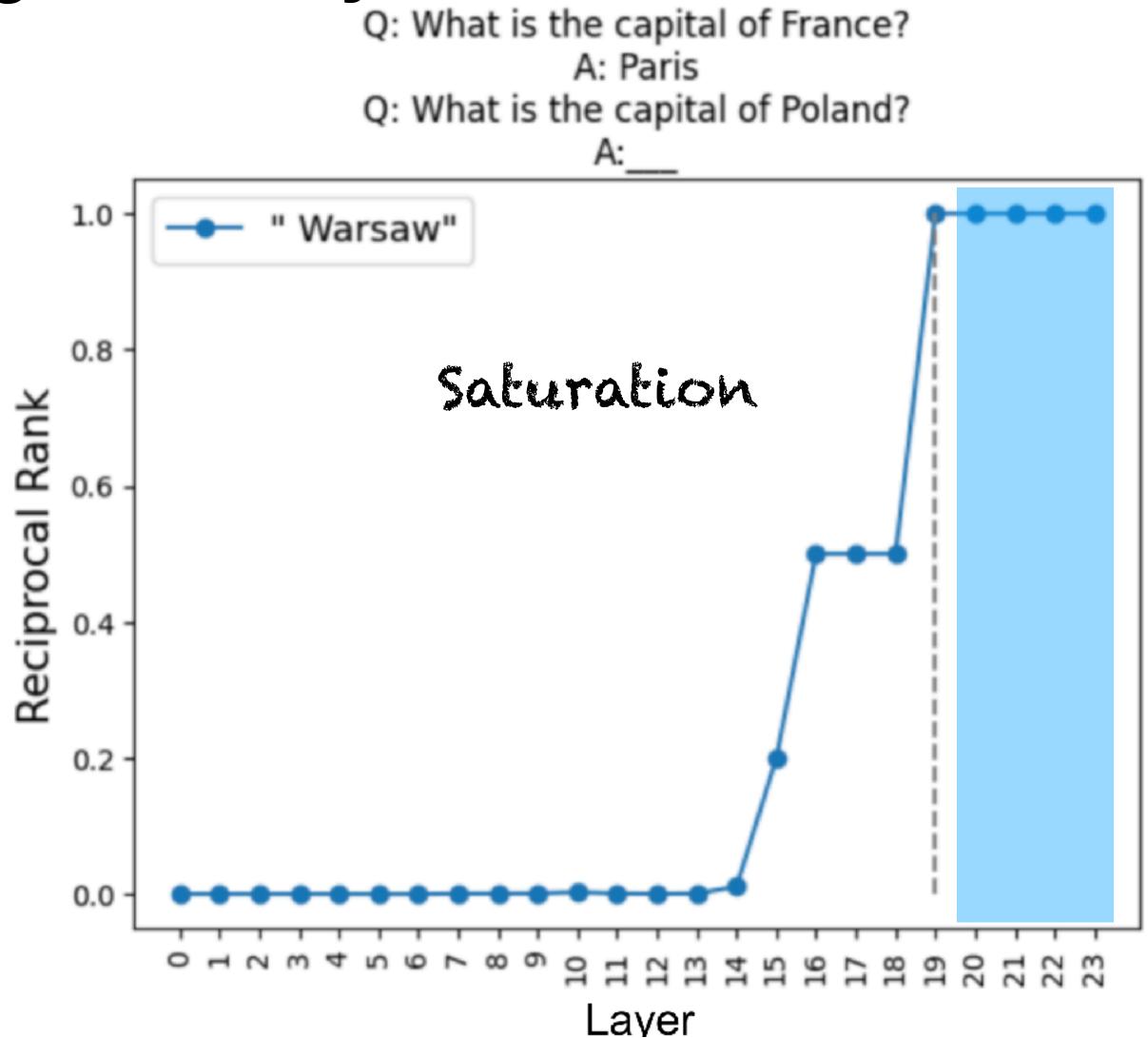
Layer	Top Token
0	(
1	А
2	А
3	А
4	А
5	А
6	No
7	С
8	А
9	А
10	А
11	А
12	Unknown
13	С
14	St
15	Poland
16	Poland
17	Poland
18	Poland
19	Warsaw
20	Warsaw
21	Warsaw
22	Warsaw
23	Warsaw



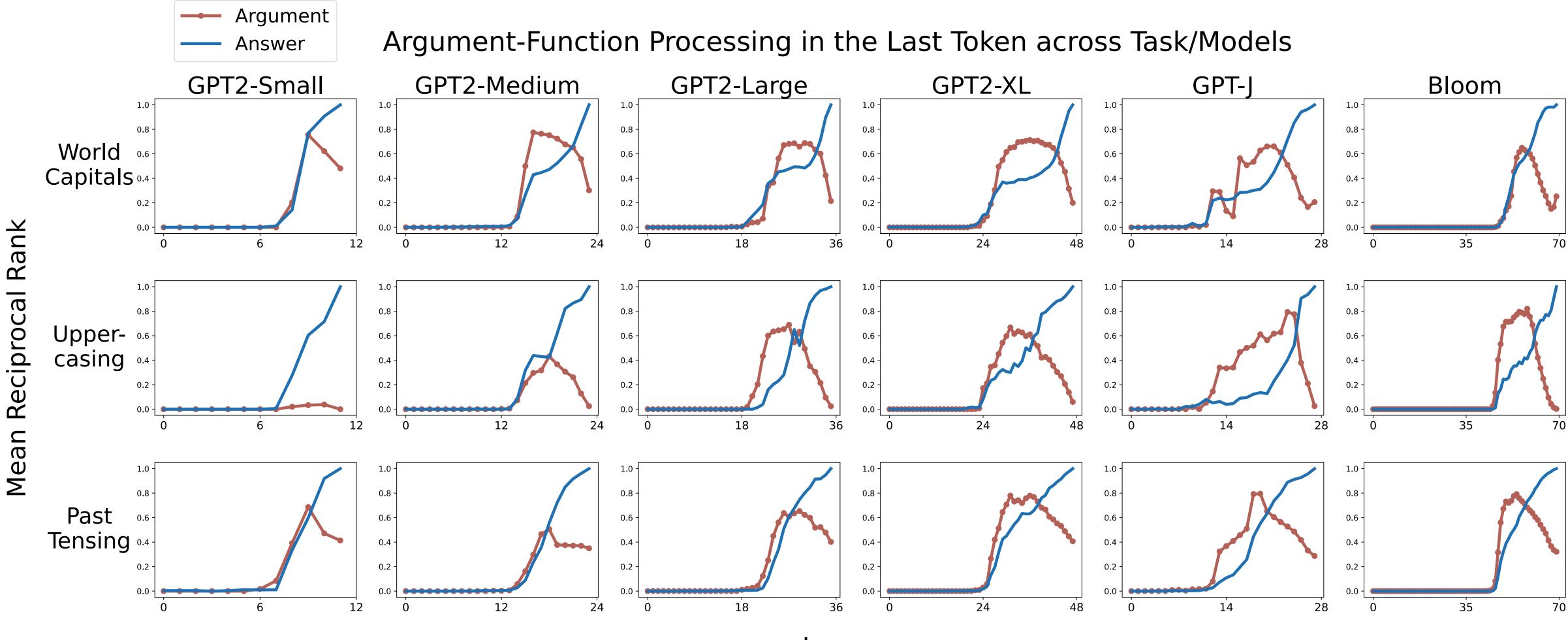
Layer	Top Token
0	(
1	Α
2	Α
3	Α
4	Α
5	Α
6	No
7	С
8	Α
9	Α
10	Α
11	Α
12	Unknown
13	С
14	St
15	Poland
16	Poland
17	Poland
18	Poland
19	Warsaw
20	Warsaw
21	Warsaw
22	Warsaw
23	Warsaw



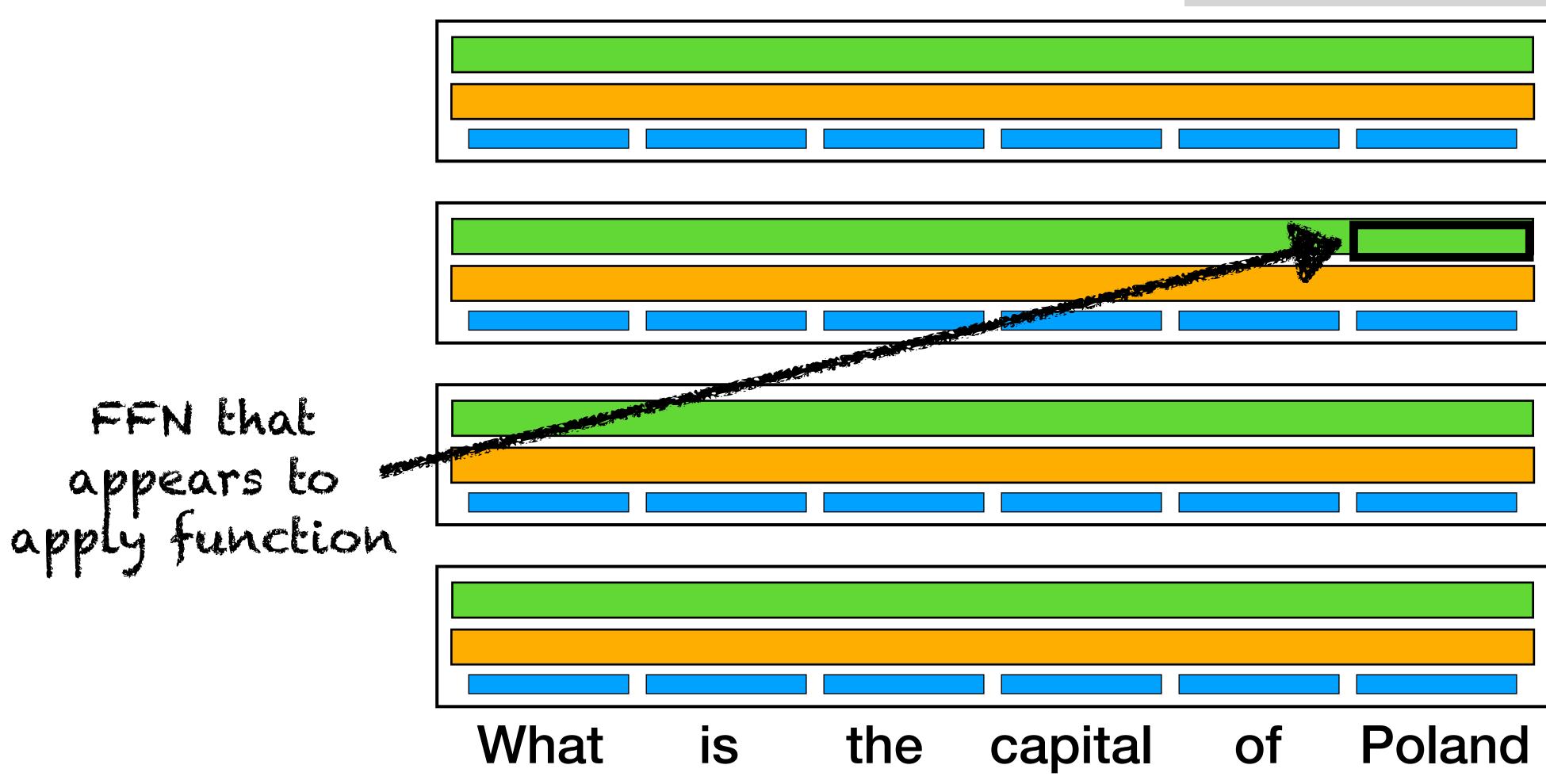
Layer	Top Token
0	(
1	Α
2	Α
3	Α
4	Α
5	Α
6	No
7	С
8	Α
9	Α
10	Α
11	Α
12	Unknown
13	С
14	St
15	Poland
16	Poland
17	Poland
18	Poland
19	Warsaw
20	Warsaw
21	Warsaw
22	Warsaw
23	Warsaw



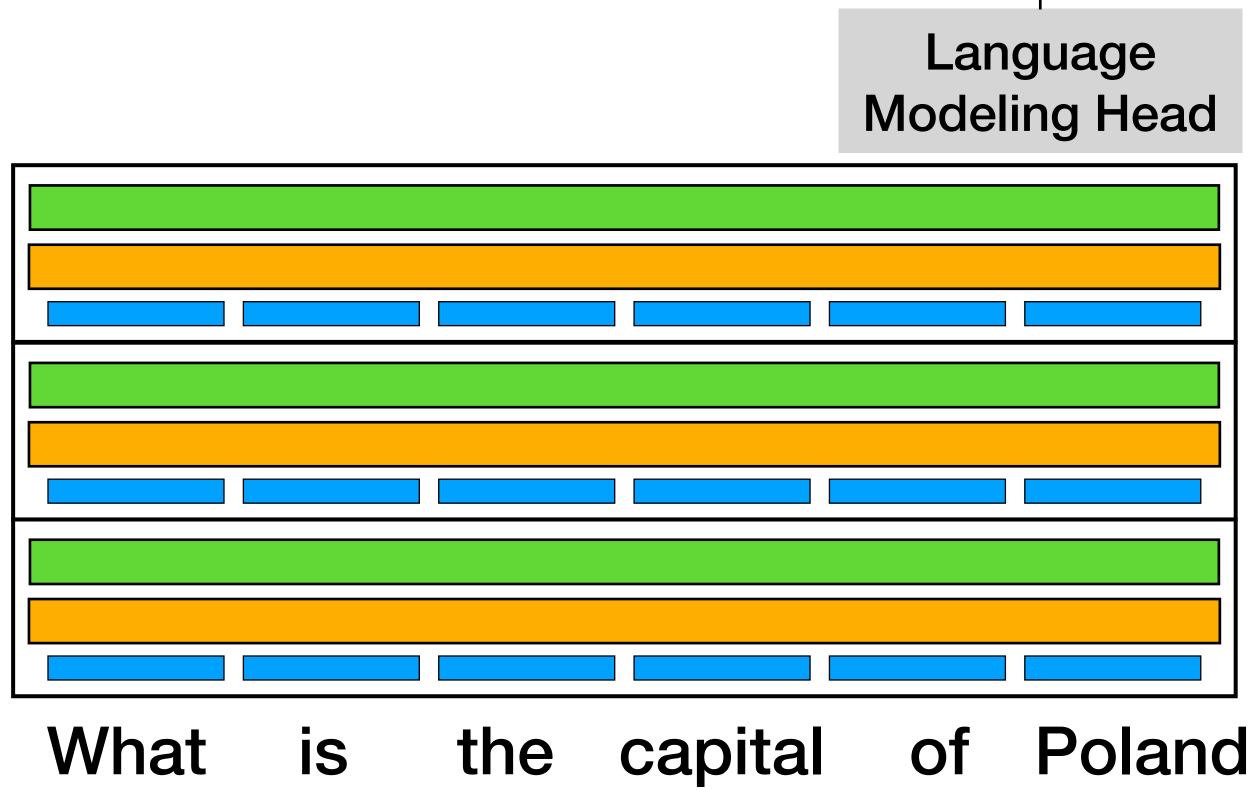
Layer	Top Token
0	(
1	Α
2	Α
3	Α
4	Α
5	Α
6	No
7	С
8	Α
9	Α
10	Α
11	Α
12	Unknown
13	С
14	St
15	Poland
16	Poland
17	Poland
18	Poland
19	Warsaw
20	Warsaw
21	Warsaw
22	Warsaw
23	Warsaw

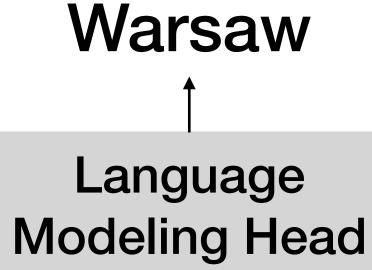


Layer

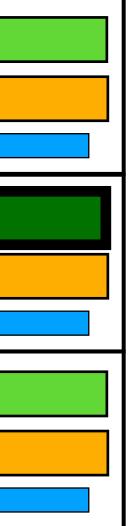


Language **Modeling Head**





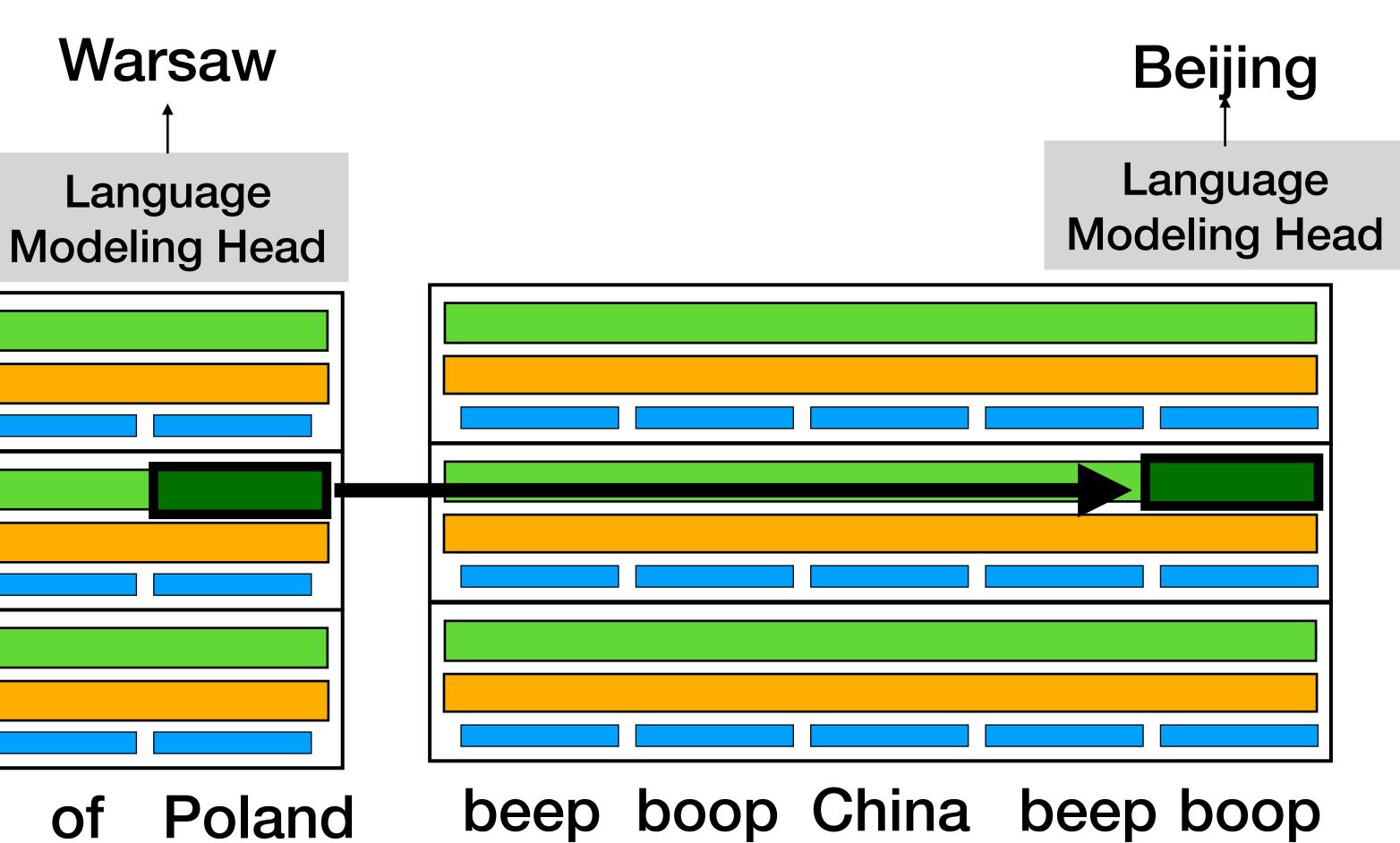
the capital of Poland What is





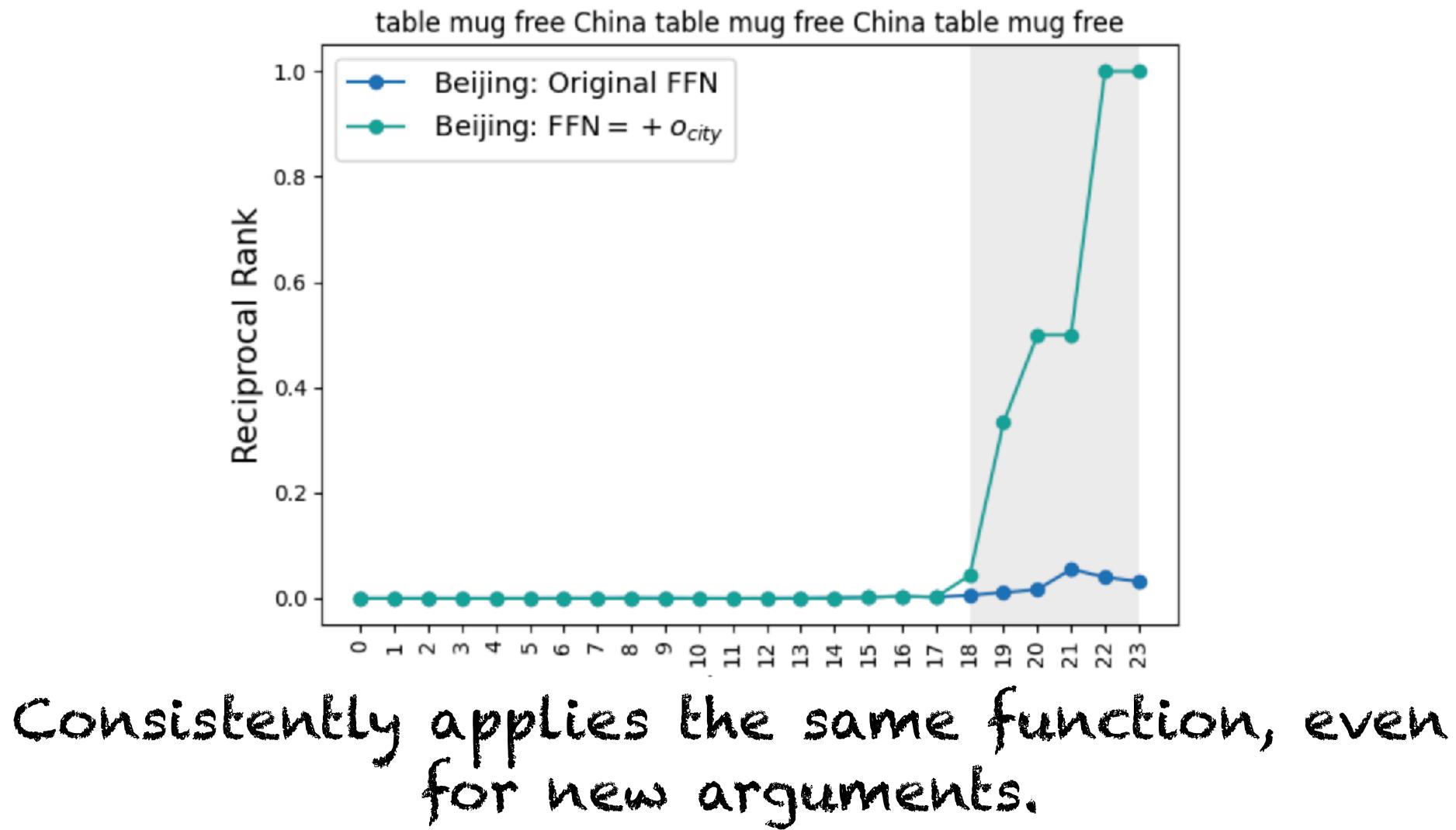
	 ••	

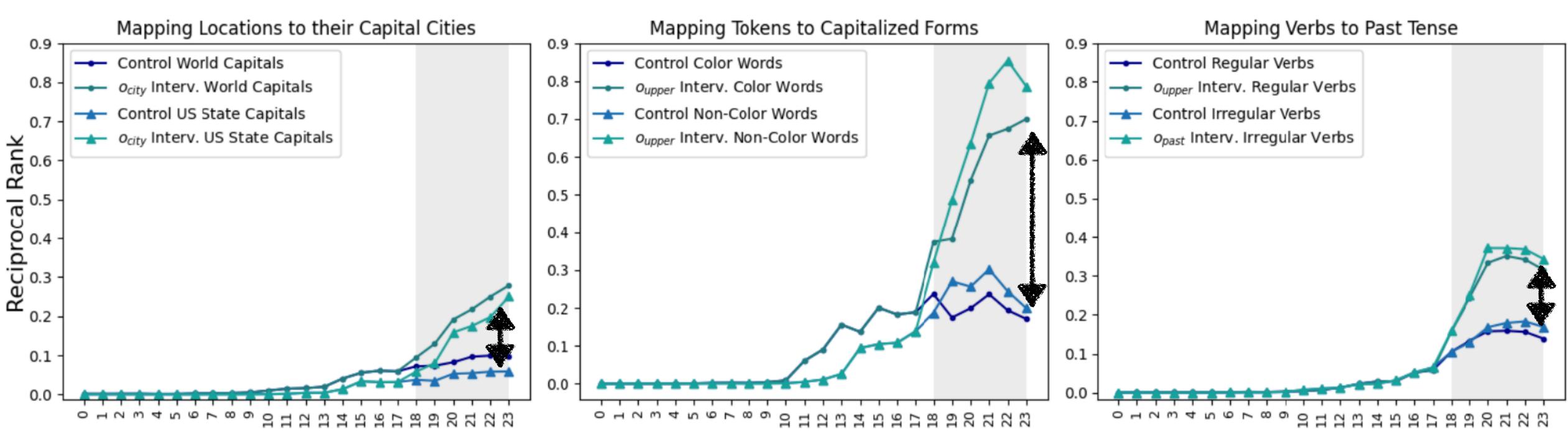
What is the capital of Poland



	 ••	

What is the capital of Poland

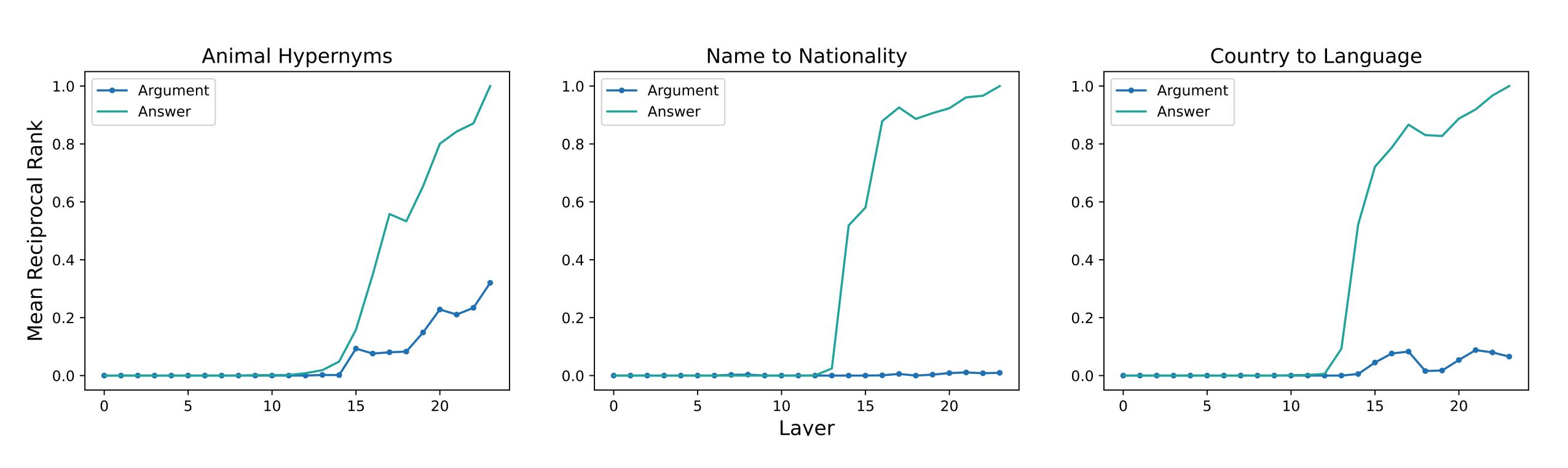




Same pattern form many tasks (not just country->capital lookup)

Random Tokens Pattern Task

Layer



Though doesn't necessarily transfer to oneto-many or many-to-one relations

Extractive

The capital of China is Beijing. What is the capital of China?

Abstractive

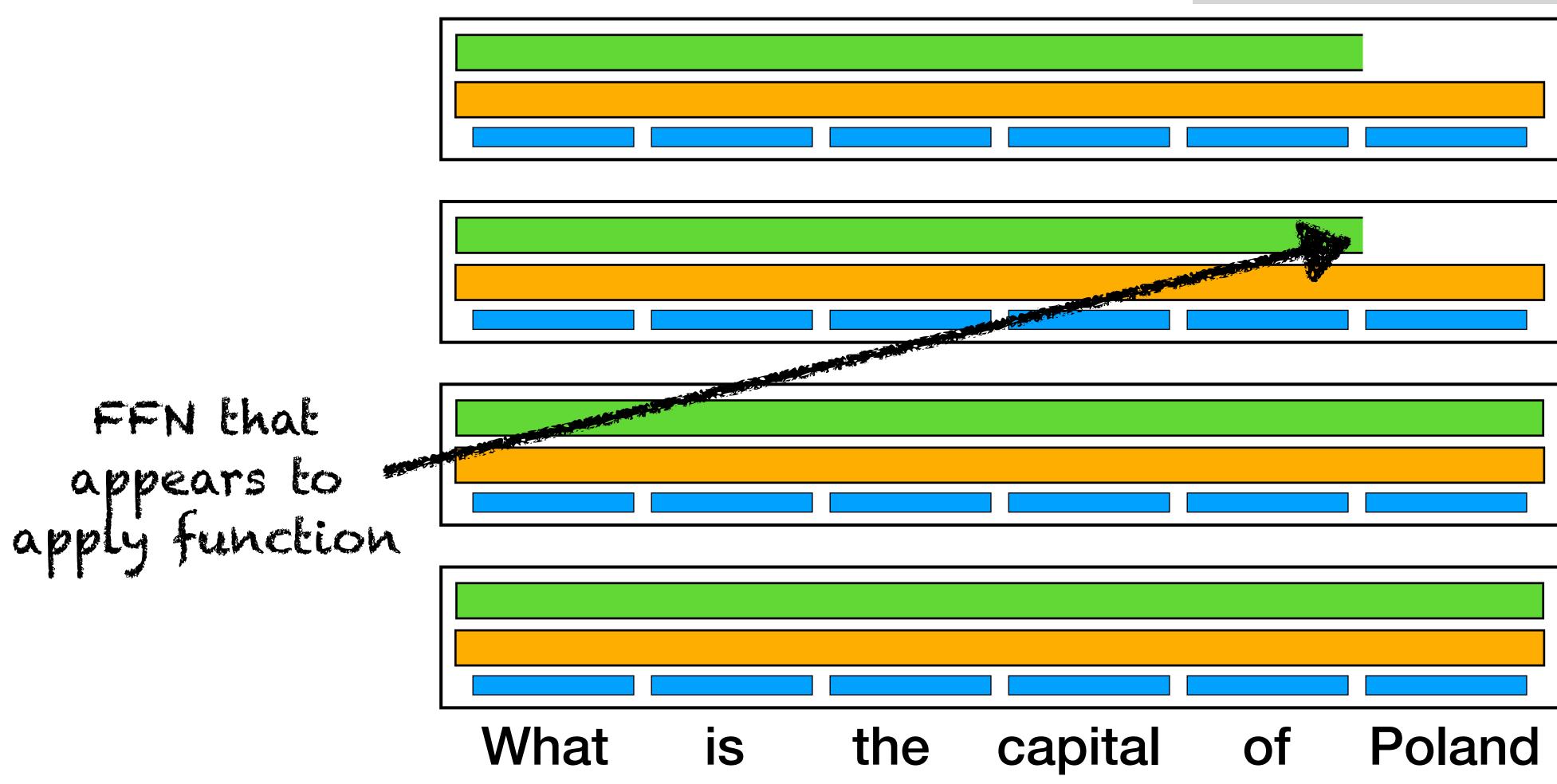
What is the capital of China?

Extractive

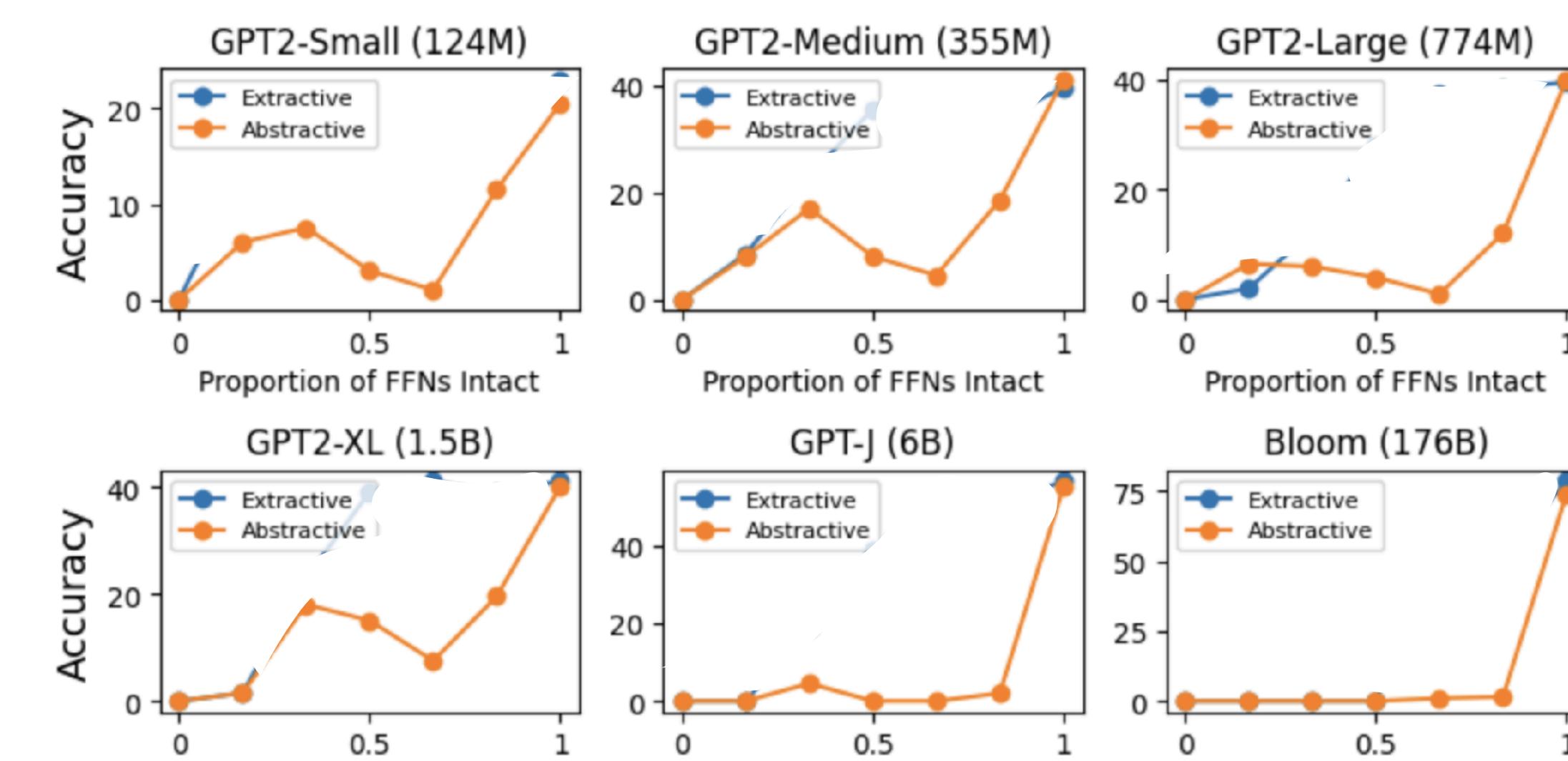
The capital of China is **Beijing**. What is the capital of China?

Abstractive

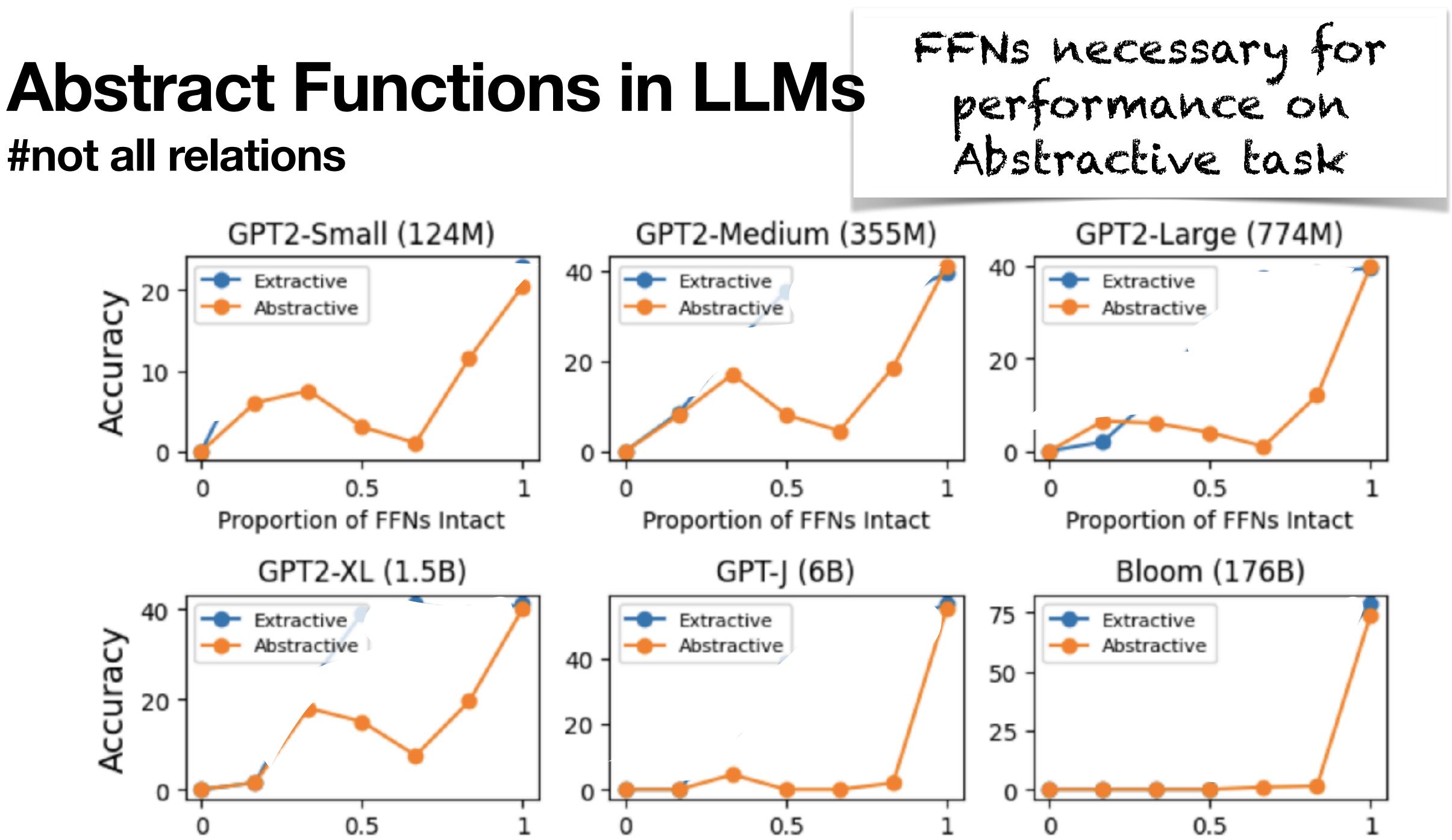
What is the capital of China?



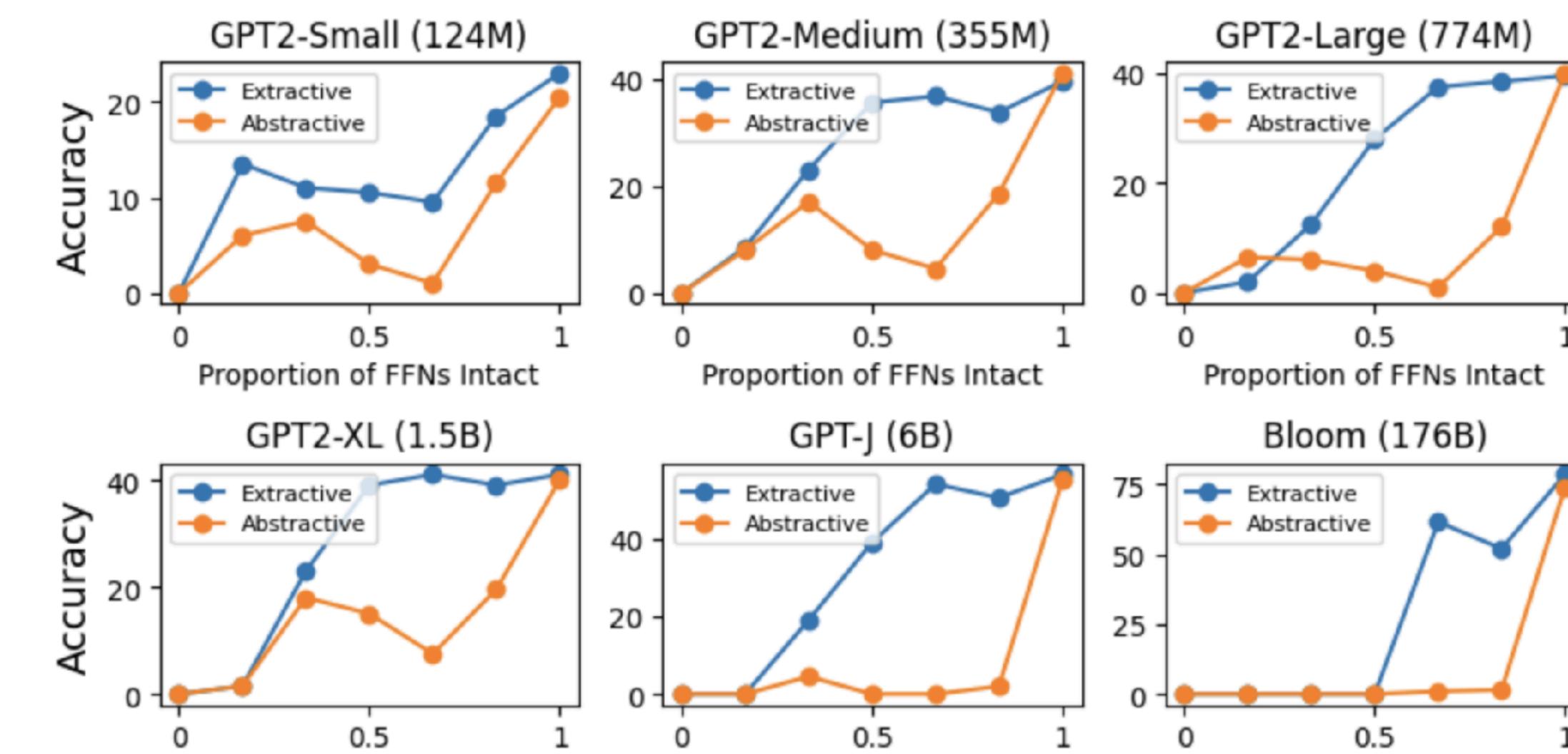
Language **Modeling Head**



#not all relations



Abstract Functions in LLMs But play no role in #not all relations



Extractive

The capital of China is Warsaw. What is the capital of China?

Abstractive

What is the capital of China?

Extractive

The capital of China is Warsaw. What is the capital of China?

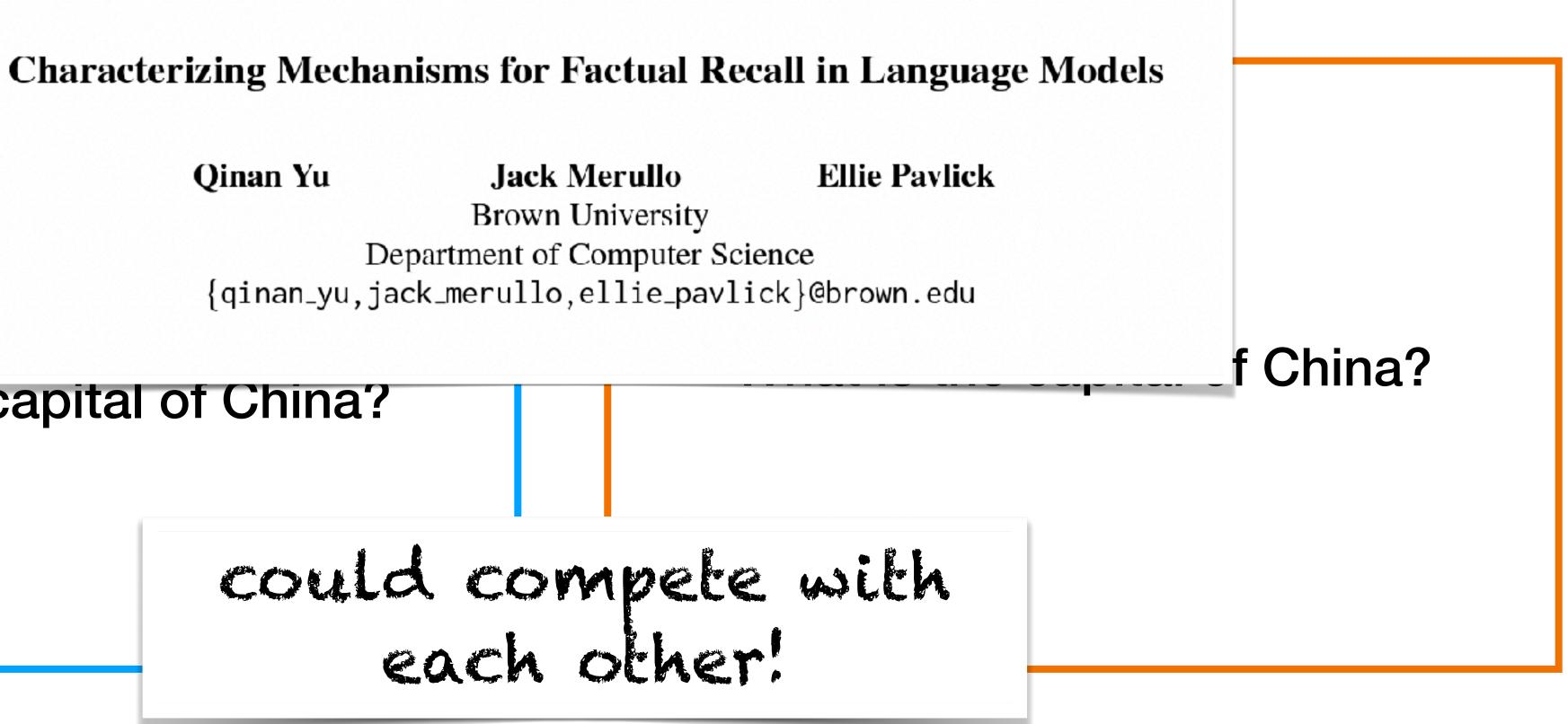
could compete with each other!

Abstractive

What is the capital of China?

Qinan Yu

The capital What is the capital of China?

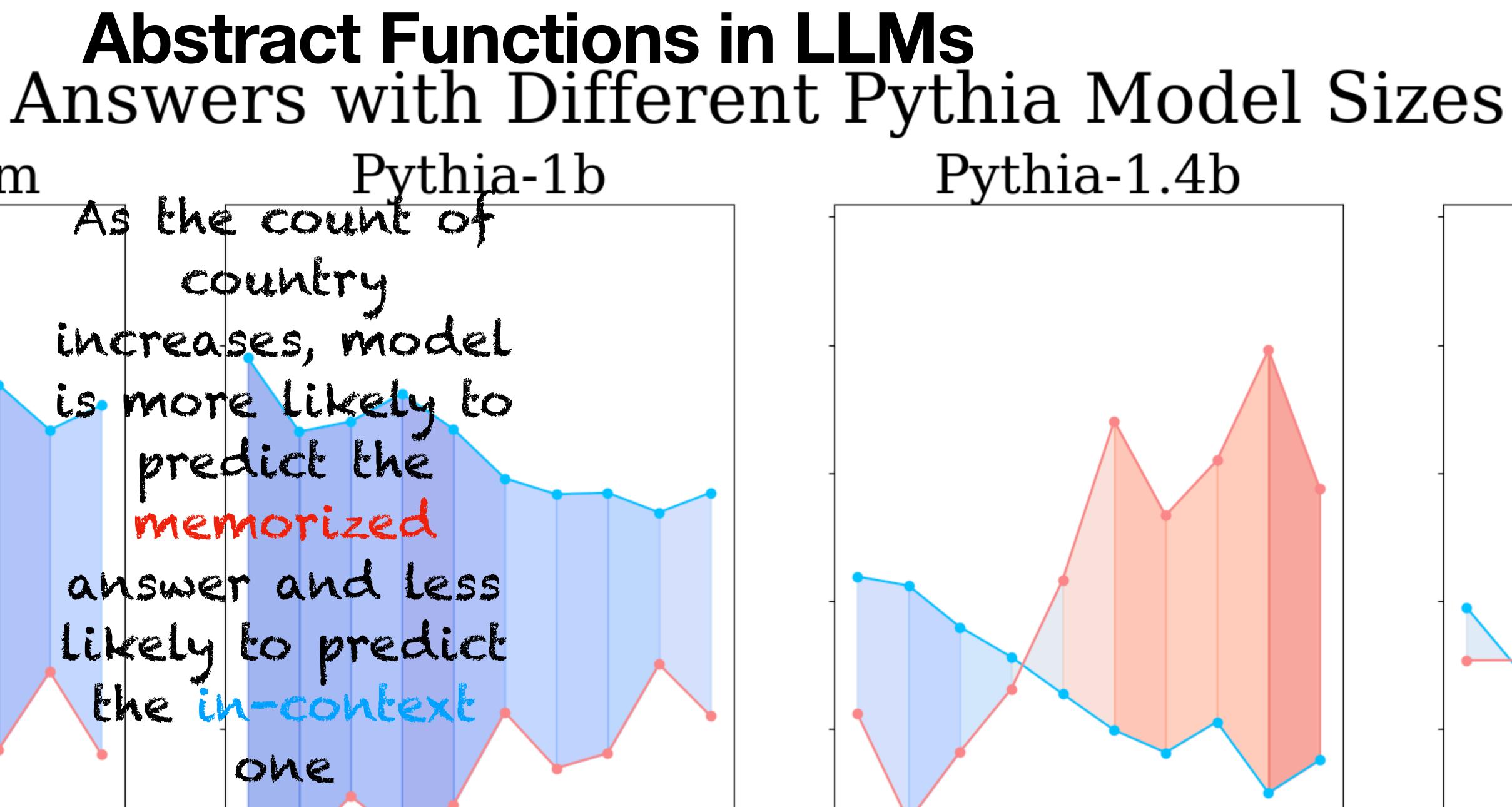


The capital of Poland is London. What is the capital of Poland?

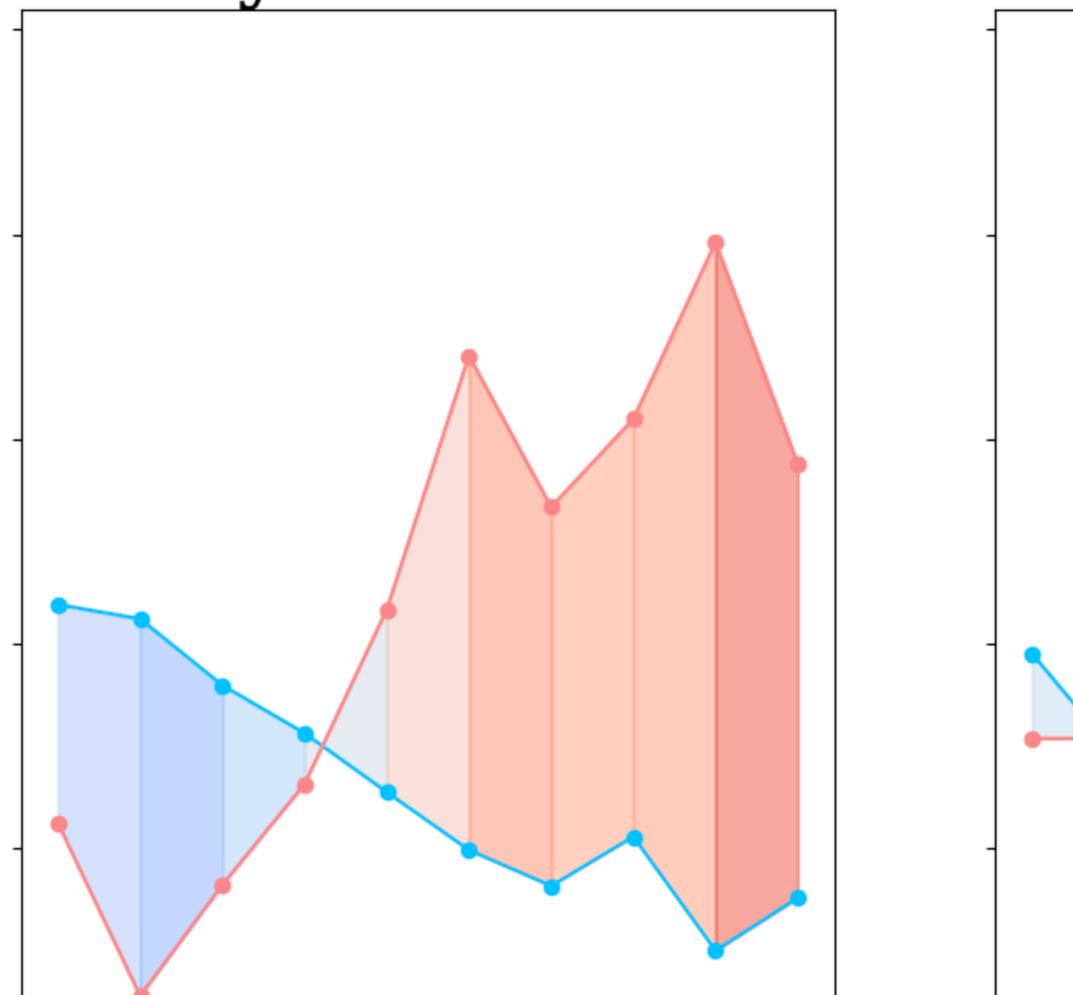
The capital of **Poland** is **London**. What is the capital of **Poland**?

London In-Context Answer Warsaw Memorized Answer

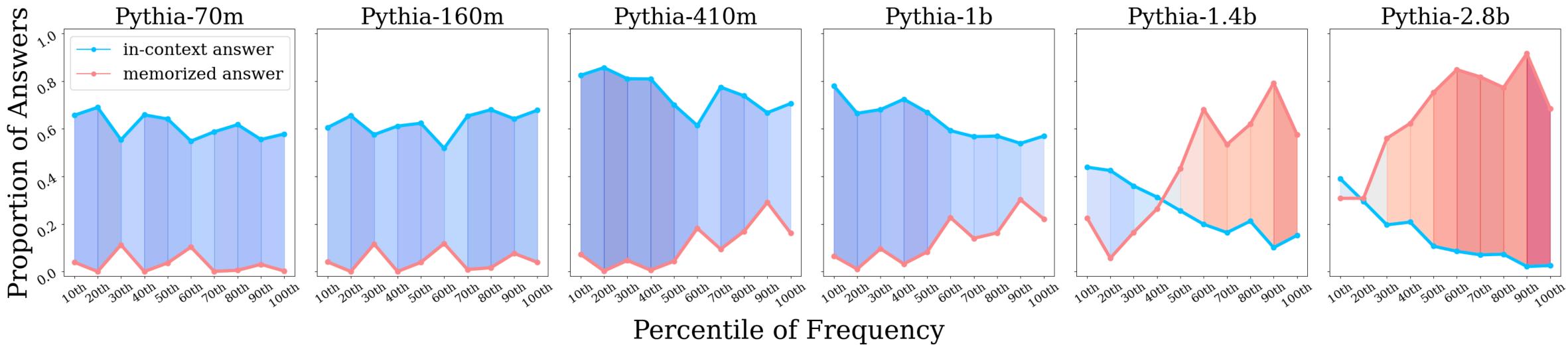
Country



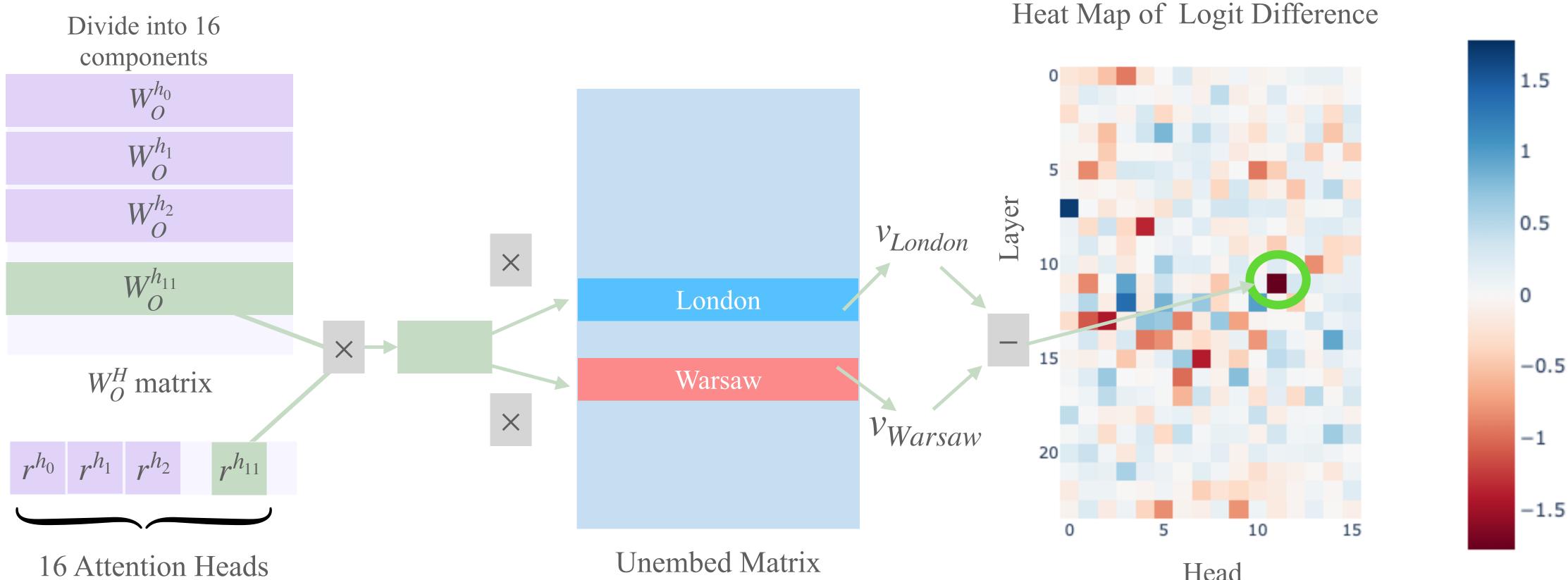
Pythia-1.4b



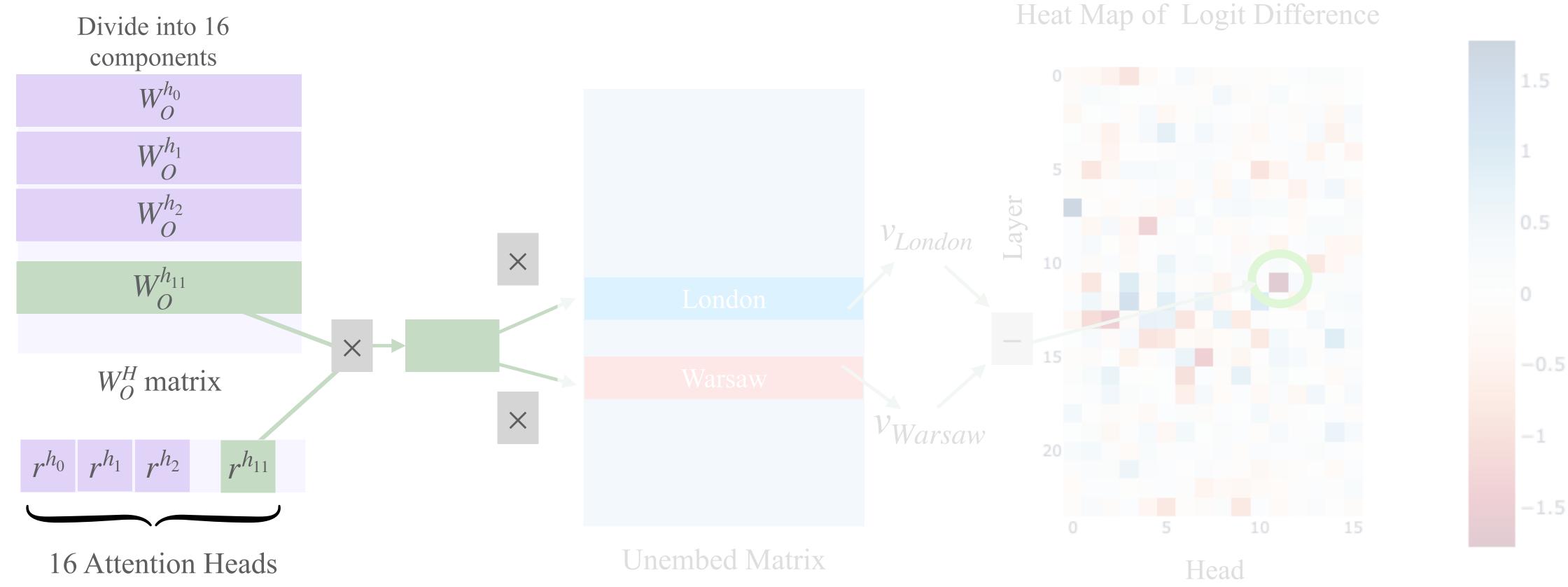
Abstract Functions in LLMs Training data frequency affects which mechanism is used

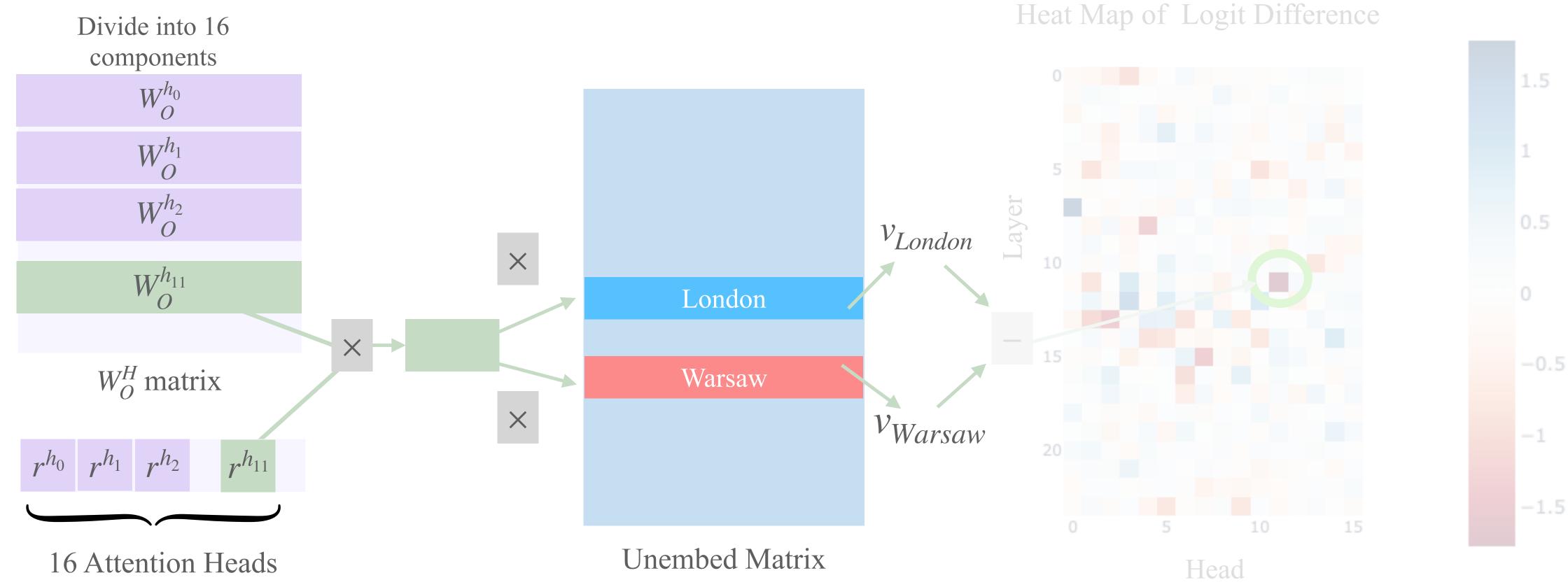


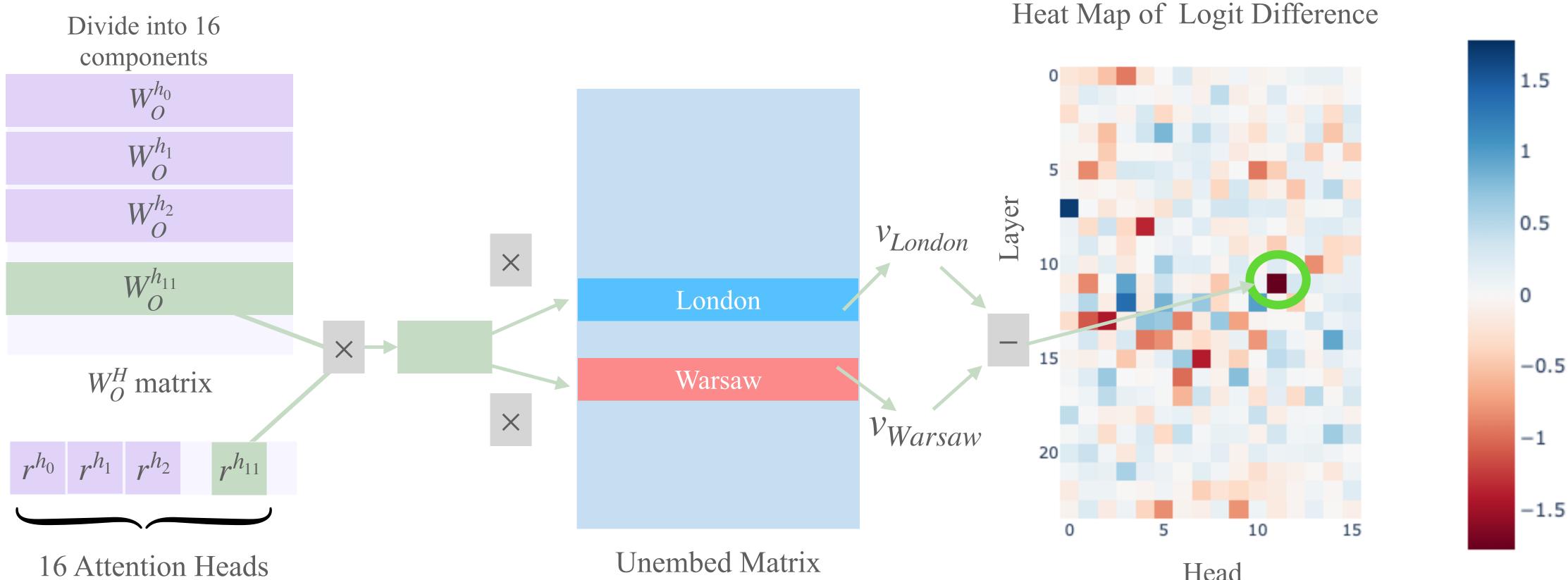
Trend appears to be associated with model size. Larger models prefer memorized answers, but change affects frequent countries first...



Head

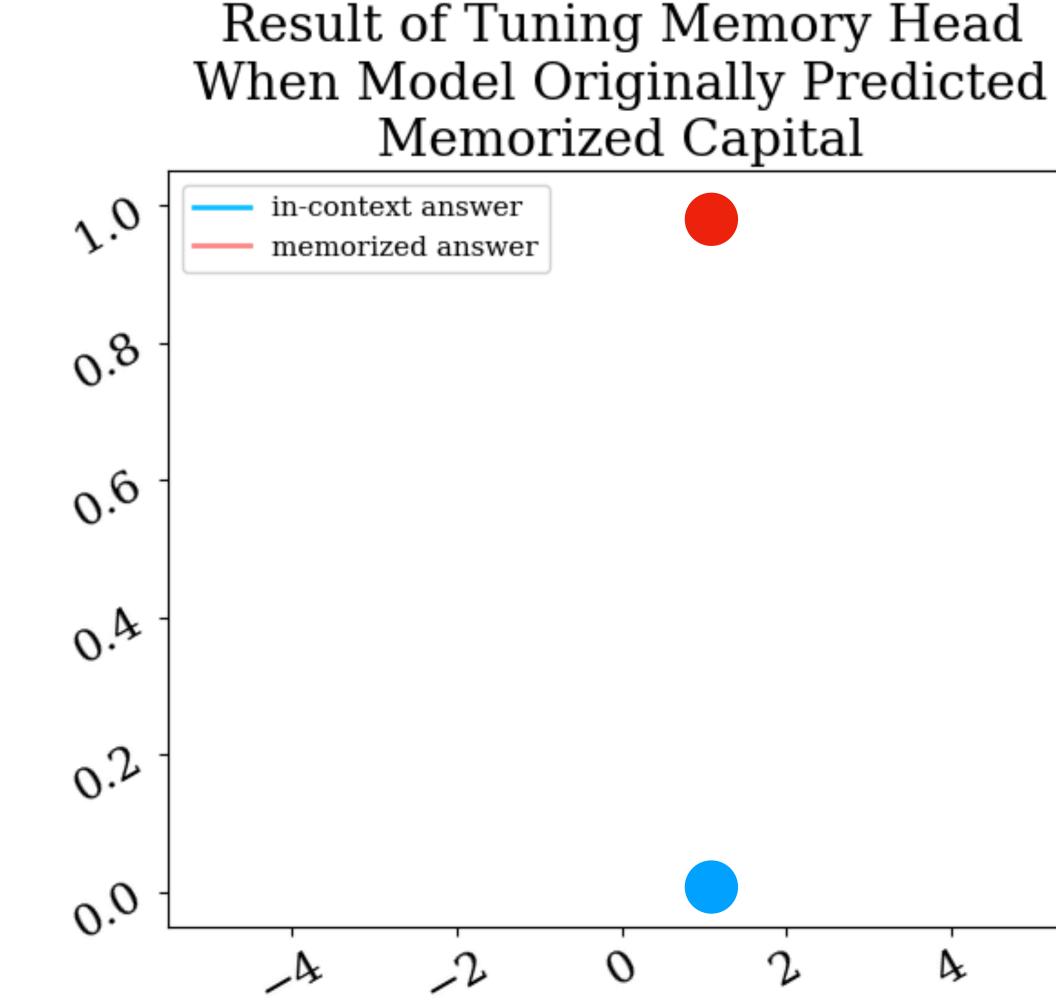




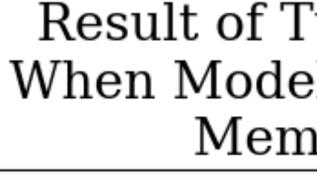


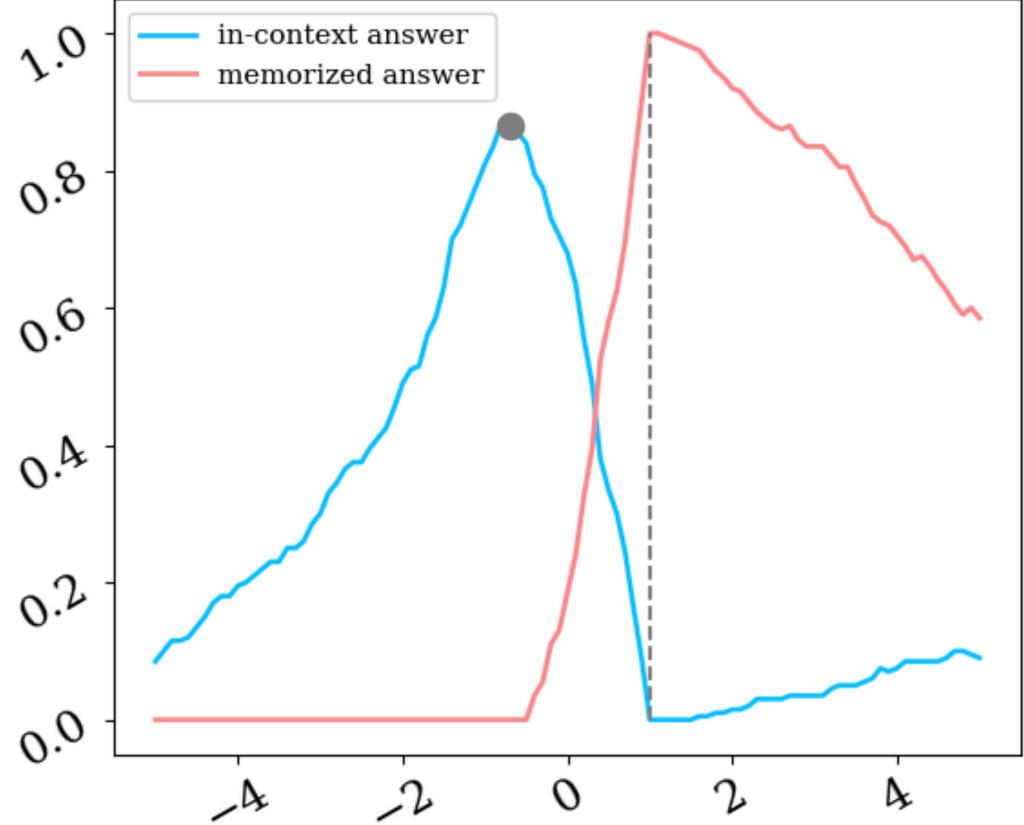
Head

Abstract Functions in LLMs Specific heads mediate which mechanism is used



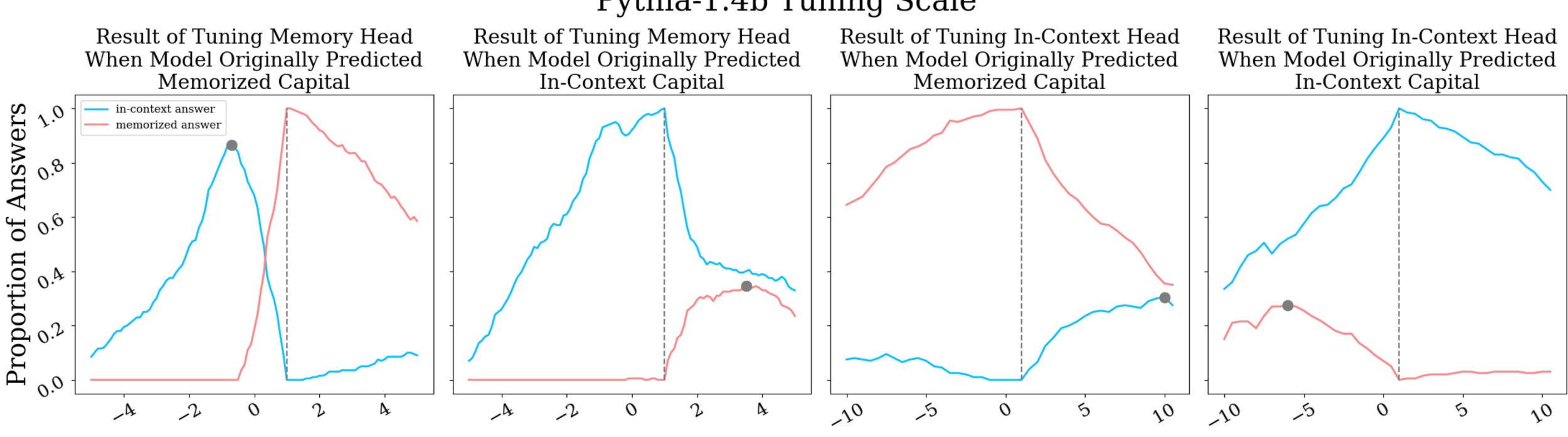
Abstract Functions in LLMs Specific heads mediate which mechanism is used





Result of Tuning Memory Head When Model Originally Predicted Memorized Capital

Abstract Functions in LLMs Specific heads mediate which mechanism is used



Pythia-1.4b Tuning Scale

Scaling Factor

Abstract Functions in LLMs Summary and Discussion

- We focus on a simple but important step of language processing: retrieving factual information from memory
- We find that Transformer LLMs appear to implement this step using a simple linear update mechanism computer in the FFNs
- The computation is modular and generic. It can be transferred to new contexts in a zero-shot manner.
- It's use is modulated by independent, local, and (somewhat) controllable mechanisms
- Serves as a proof of concept for how "black box" LLM behaviors can be translated into interpretable, functional terms

This Talk

- Transformers and the "Mental Model of LLMs"
- Two Proofs of Concept:
 - Abstract representation of relations
 - Modular and reusable algorithmic "building blocks"

Understanding LLM Circuits and Algorithms

Published as a conference paper at ICLR 2024

CIRCUIT COMPONENT REUSE ACROSS TASKS IN TRANSFORMER LANGUAGE MODELS

Jack Merullo Department of Computer Science Brown University jack_merullo@brown.edu

Ellie Pavlick Department of Computer Science Brown University ellie pavlick@brown.edu

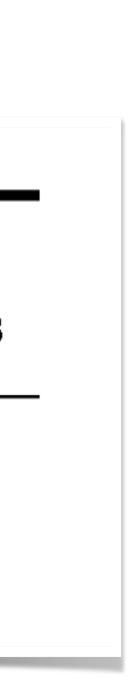
Jack Merullo

Carsten Eickhoff

Carsten Eickhoff School of Medicine University of Tübingen carsten.eickhoff@uni-tuebingen.de

Talking Heads: Understanding Inter-layer Communication in Transformer Language Models

Anonymous Author(s) Affiliation Address email



Understanding LLM Circuits and Algorithms Two Different Language Processing Tasks

Then, Matthew and Robert had a lot of fun at the school. Robert gave a ring to _____

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What color is the pencil? A: _____

Wang et al. (2022)

Ippolito and Callison-Burch (2023)

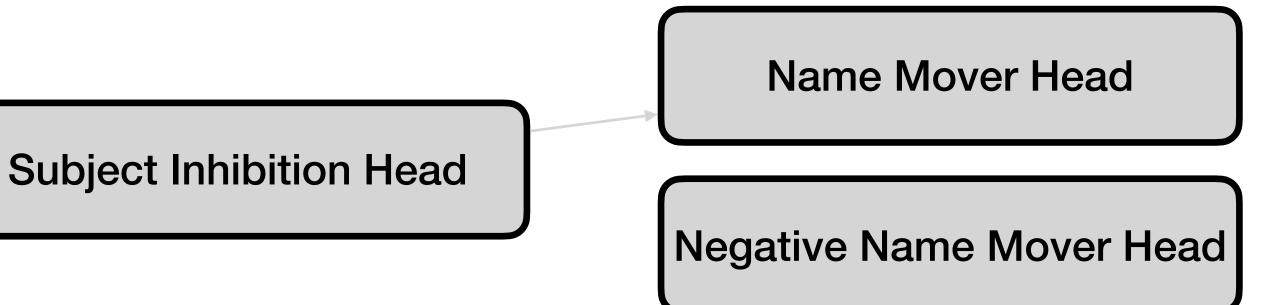
Matthew and Robert had a lot of fun at the school. Robert gave a ring to _____.

Kevin Wang¹, Alexandre Variengien¹, Arthur Conmy¹, Buck Shlegeris¹ & Jacob Steinhardt^{1,2} ¹Redwood Research ²UC Berkeley kevin@rdwrs.com, alexandre@rdwrs.com, arthur@rdwrs.com, buck@rdwrs.com, jsteinhardt@berkeley.edu

INTERPRETABILITY IN THE WILD: A CIRCUIT FOR INDIRECT OBJECT IDENTIFICATION IN GPT-2 SMALL

Matthew and Robert had a lot of fun at the school. Robert gave a ring to _____.

Duplicate Token/Induction Heads Heads

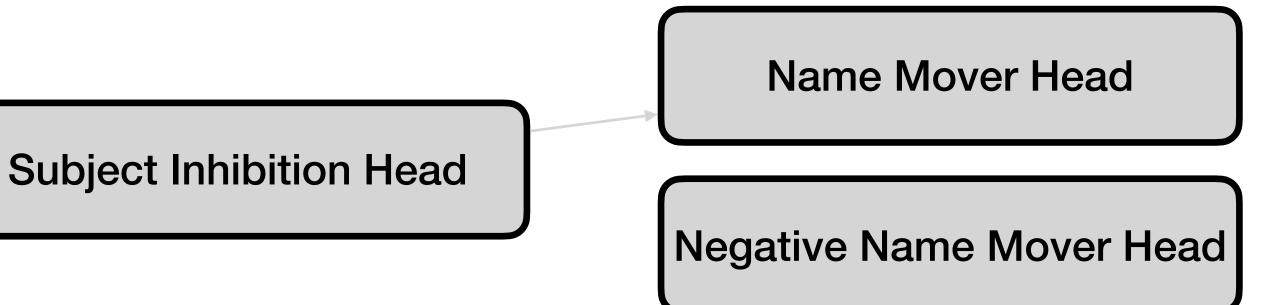


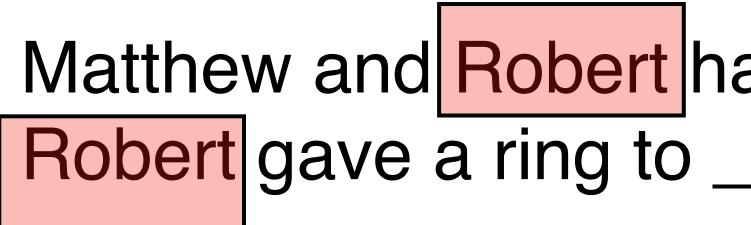


Duplicate Token/Induction Heads Heads

1. Identify any duplicated names.

Matthew and Robert had a lot of fun at the school.

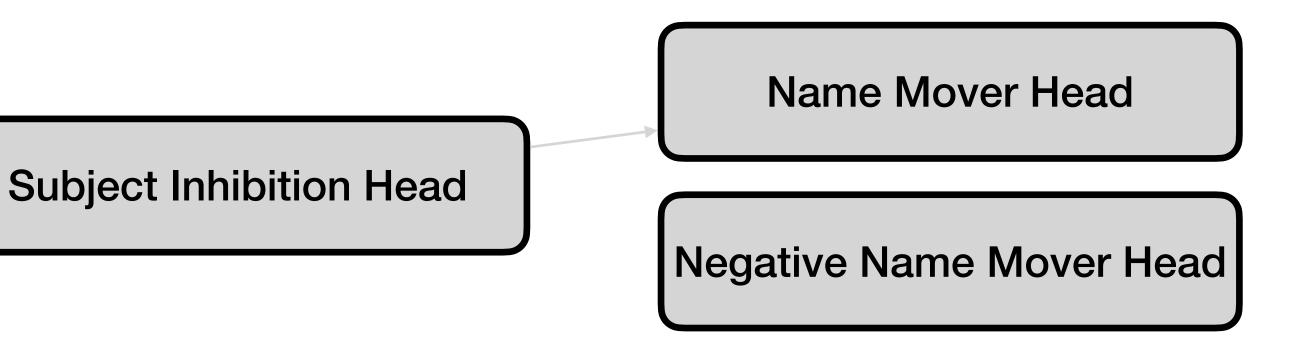


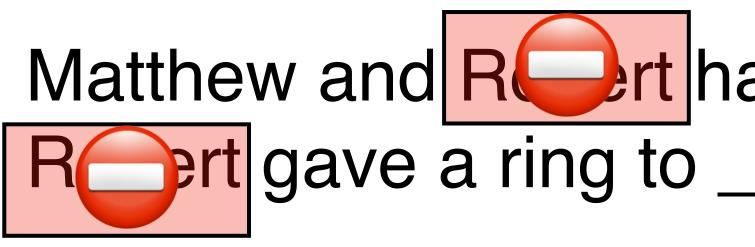


Duplicate Token/Induction Heads Heads

- 1. Identify any duplicated names.
- 2. Alert the S-Inhibition head of their location

Matthew and Robert had a lot of fun at the school.

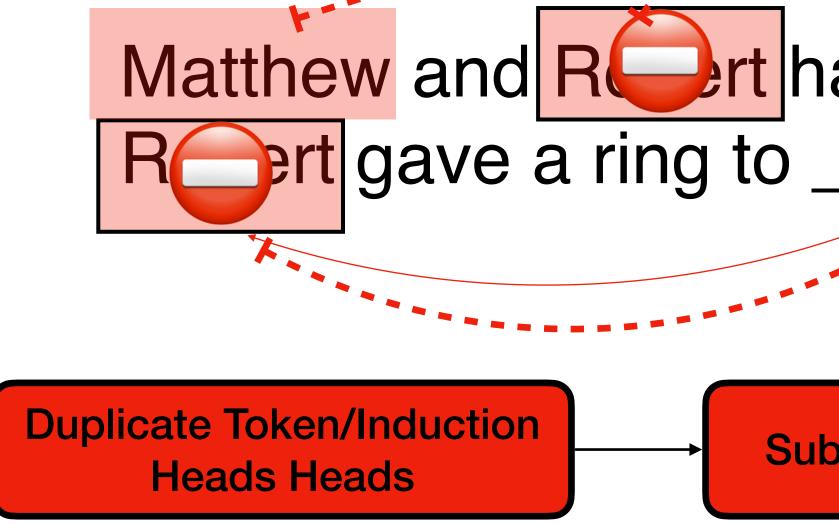




- Identify any duplicated names.
- 2. Alert the S-Inhibition head of their location
- 3. Block attention to these duplicates

Matthew and Repert had a lot of fun at the school.

Understanding LLM Circuits and Algorithms Prior Work: The IOL Circuit Matthew and Repert had a lot of fun at the school. **R**ert gave a ring to Name Mover Head **Duplicate Token/Induction Subject Inhibition Head Heads Heads Negative Name Mover Head**



- Identify any duplicated names.
- 2. Alert the S-Inhibition head of their location
- 3. Block attention to these duplicates
- 4. Attend to remaining names and copy

Robert gave a ring to Matthew.

- Identify any duplicated names.
- 2. Alert the S-Inhibition head of their location
- 3. Block attention to these duplicates
- 4. Attend to remaining names and copy

Matthew and Robert had a lot of fun at the school.

- color is the textbook?
- A: Orange
- color is the pencil?

A:

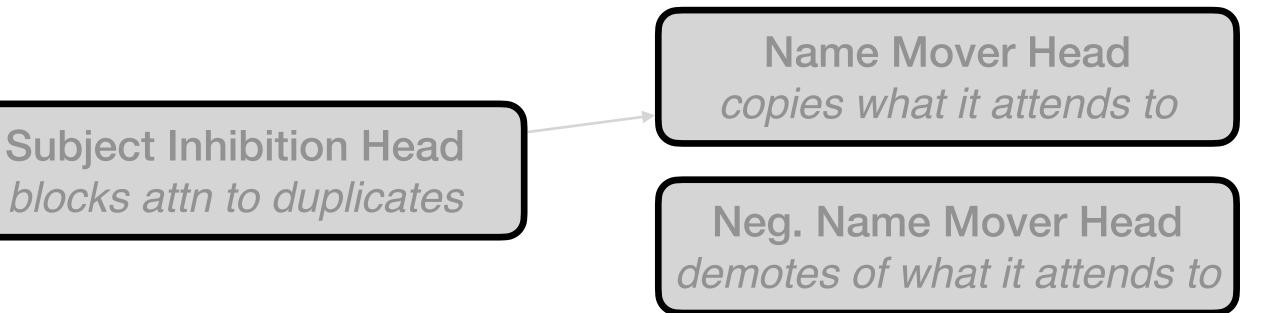
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What

- color is the textbook?
- A: Orange
- color is the pencil?

A:

Duplicate Token Heads identifies duplicates

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What

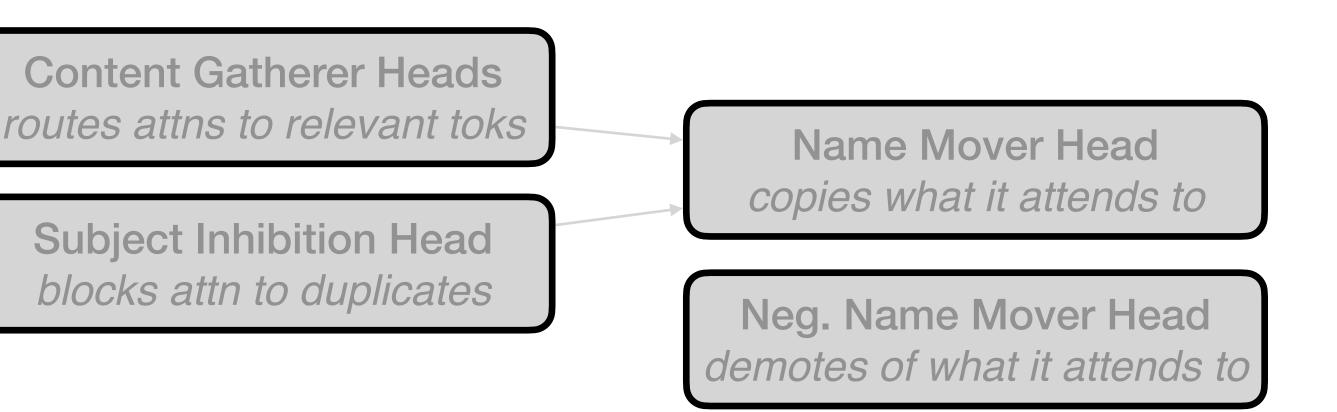


- color is the textbook?
- A: Orange
- color is the pencil? **A**:

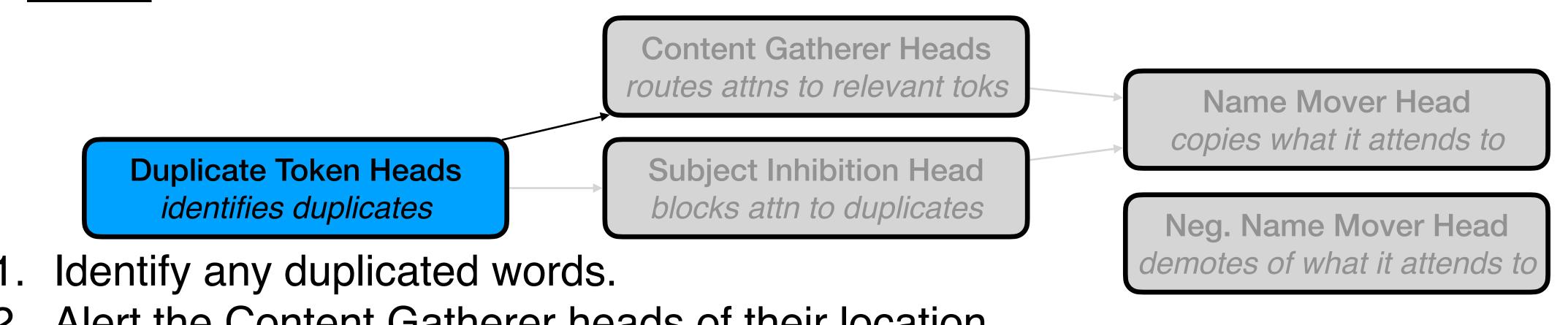
Duplicate Token Heads *identifies duplicates*

1. Identify any duplicated words.

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What



- color is the textbook?
- A: Orange color is the pencil? **A**:



- 1. Identify any duplicated words.
- 2. Alert the Content Gatherer heads of their location

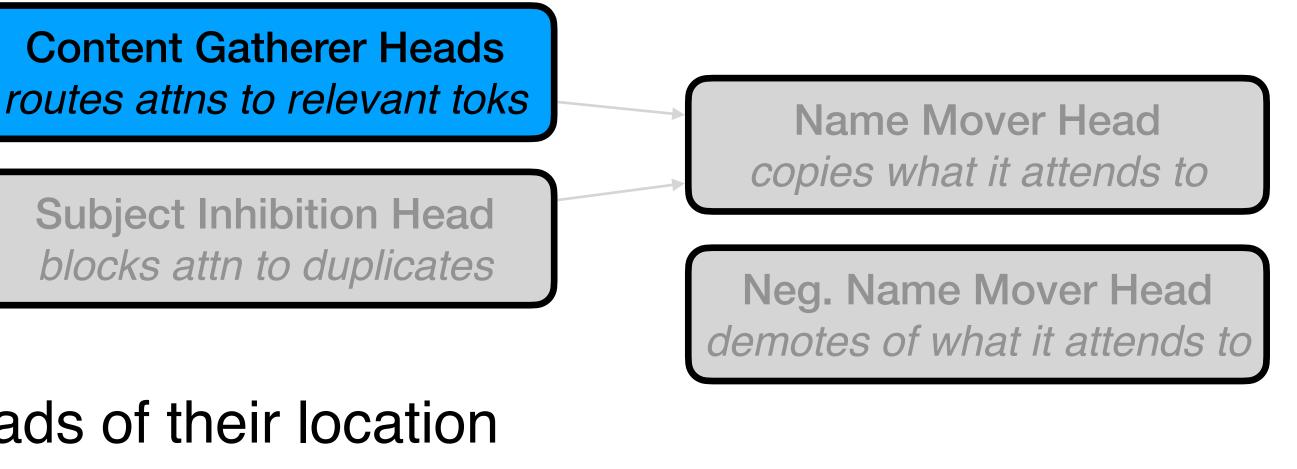
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What

color is the textbook? A: Orange color is the pencil? **A**:

> **Duplicate Token Heads** *identifies duplicates*

- 1. Identify any duplicated words.
- 2. Alert the Content Gatherer heads of their location
- 3. Promote attention to these duplicates

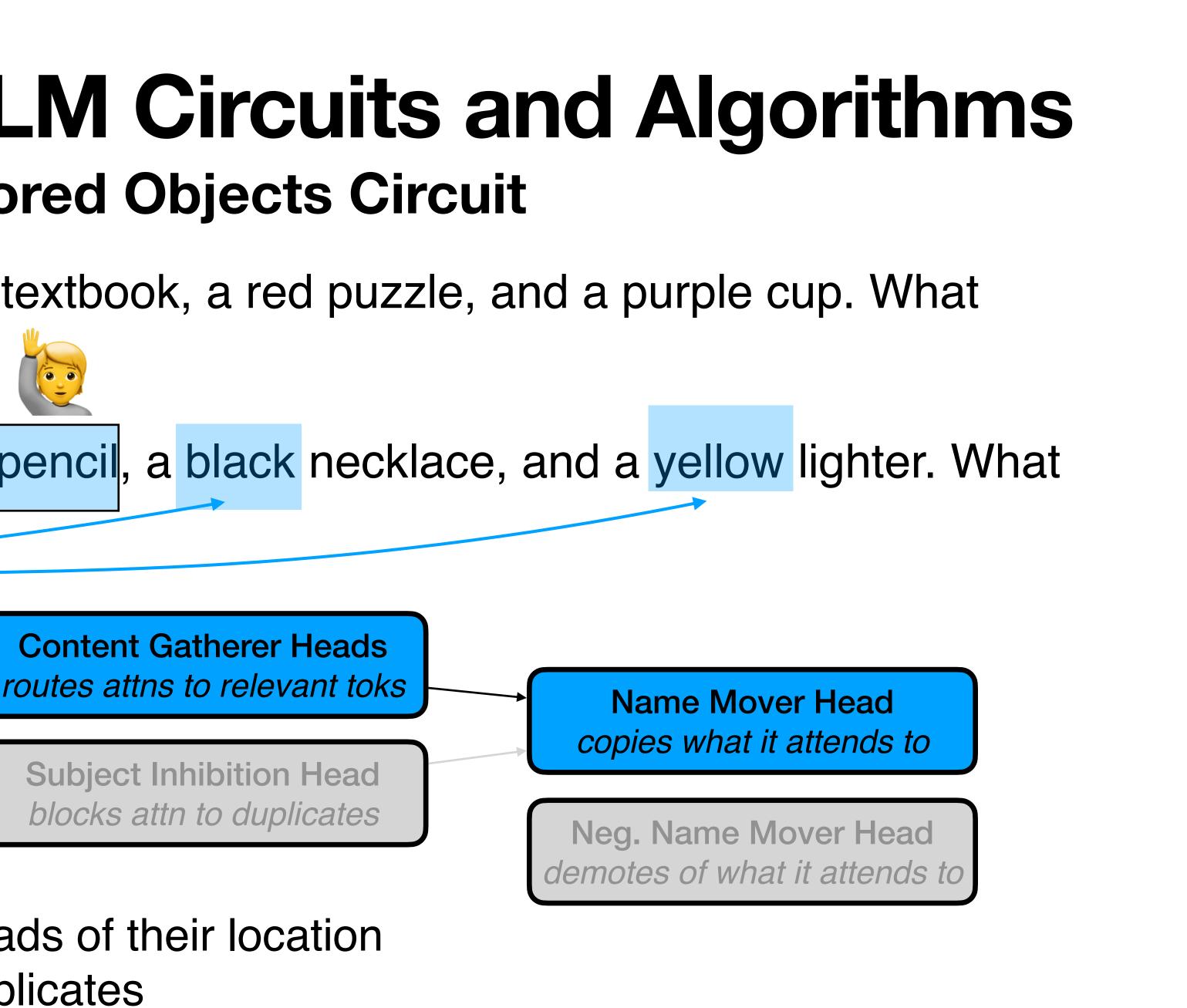
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What



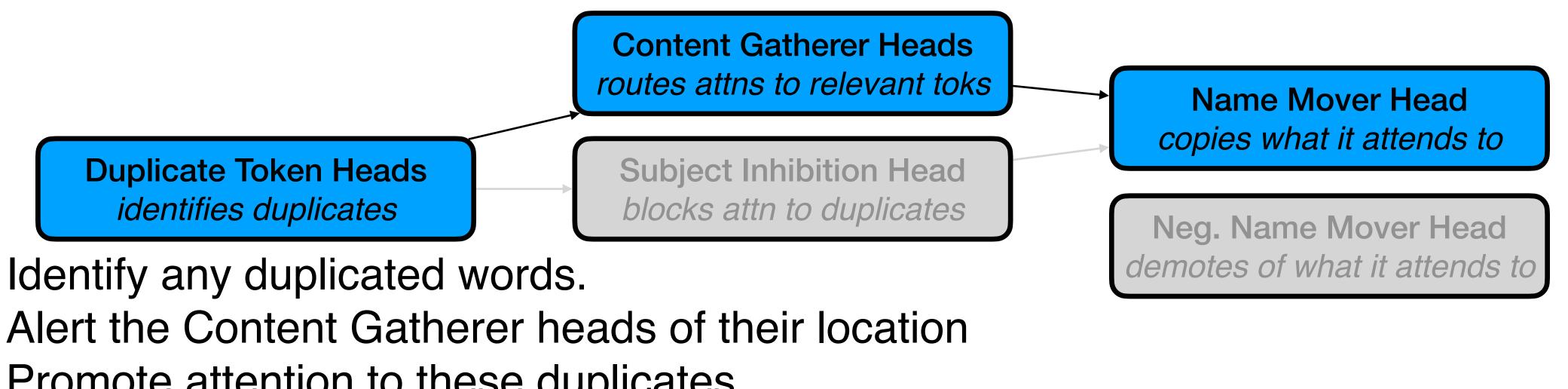
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What color is the textbook? A: Orange Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What color is the pencil? **A**:

Duplicate Token Heads *identifies duplicates*

- Identify any duplicated words.
- Alert the Content Gatherer heads of their location 2.
- 3. Promote attention to these duplicates
- 4. Attend to (color of) duplicate and copy



- color is the textbook?
- A: Orange
- color is the pencil?
- A: Blue

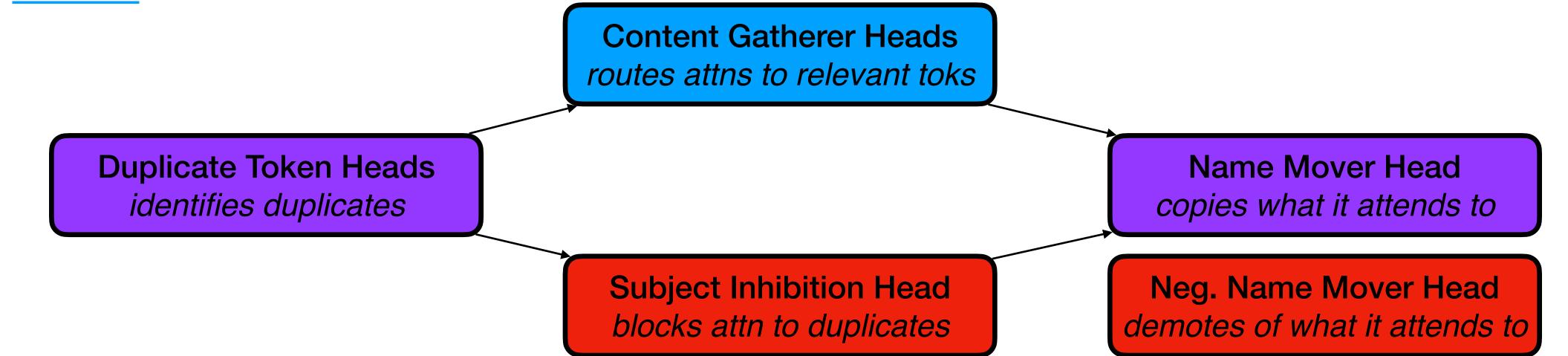


- Identify any duplicated words.
- 2.
- 3. Promote attention to these duplicates
- 4. Attend to (color of) duplicate and copy

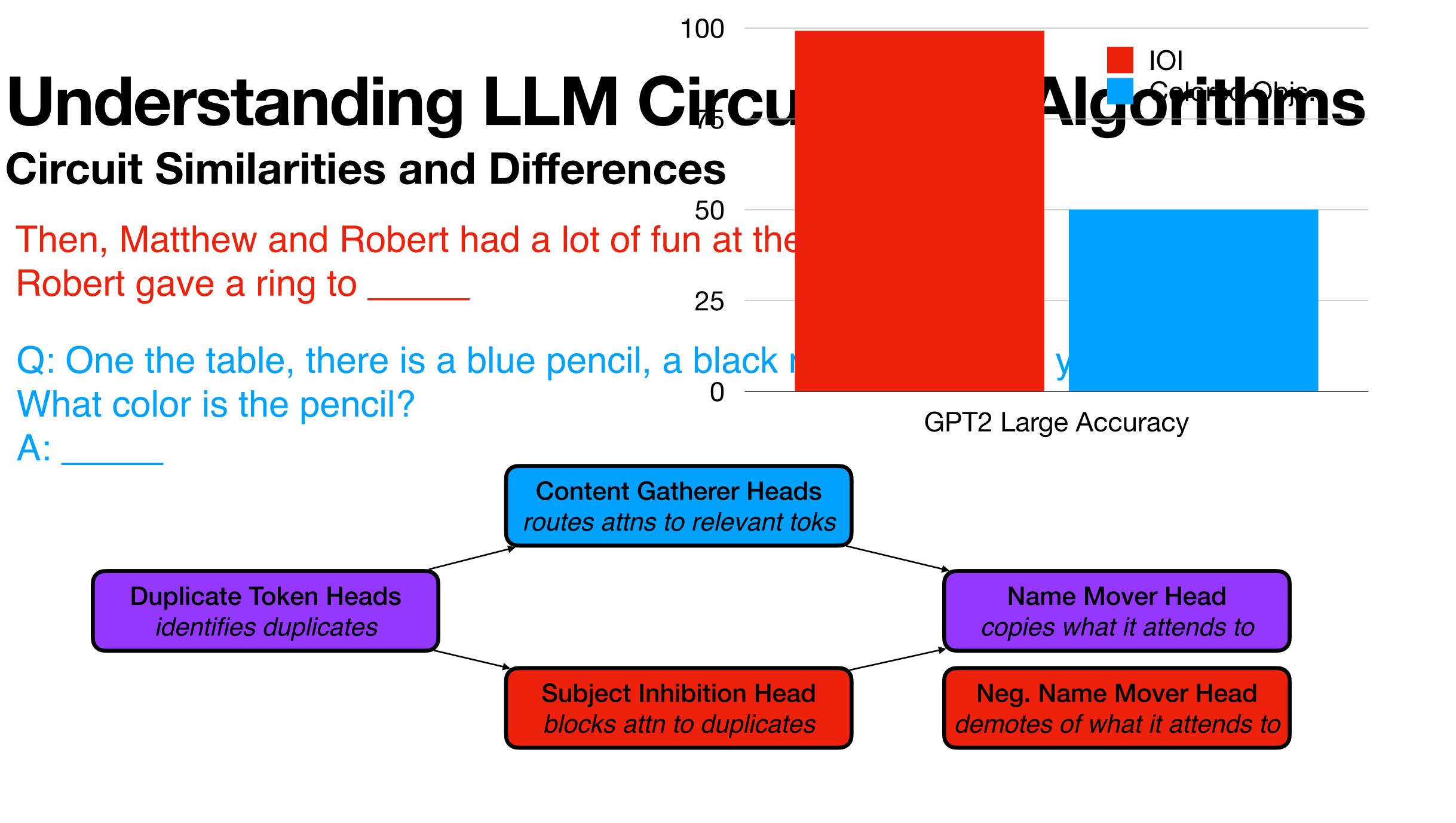
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What

Understanding LLM Circuits and Algorithms Circuit Similarities and Differences

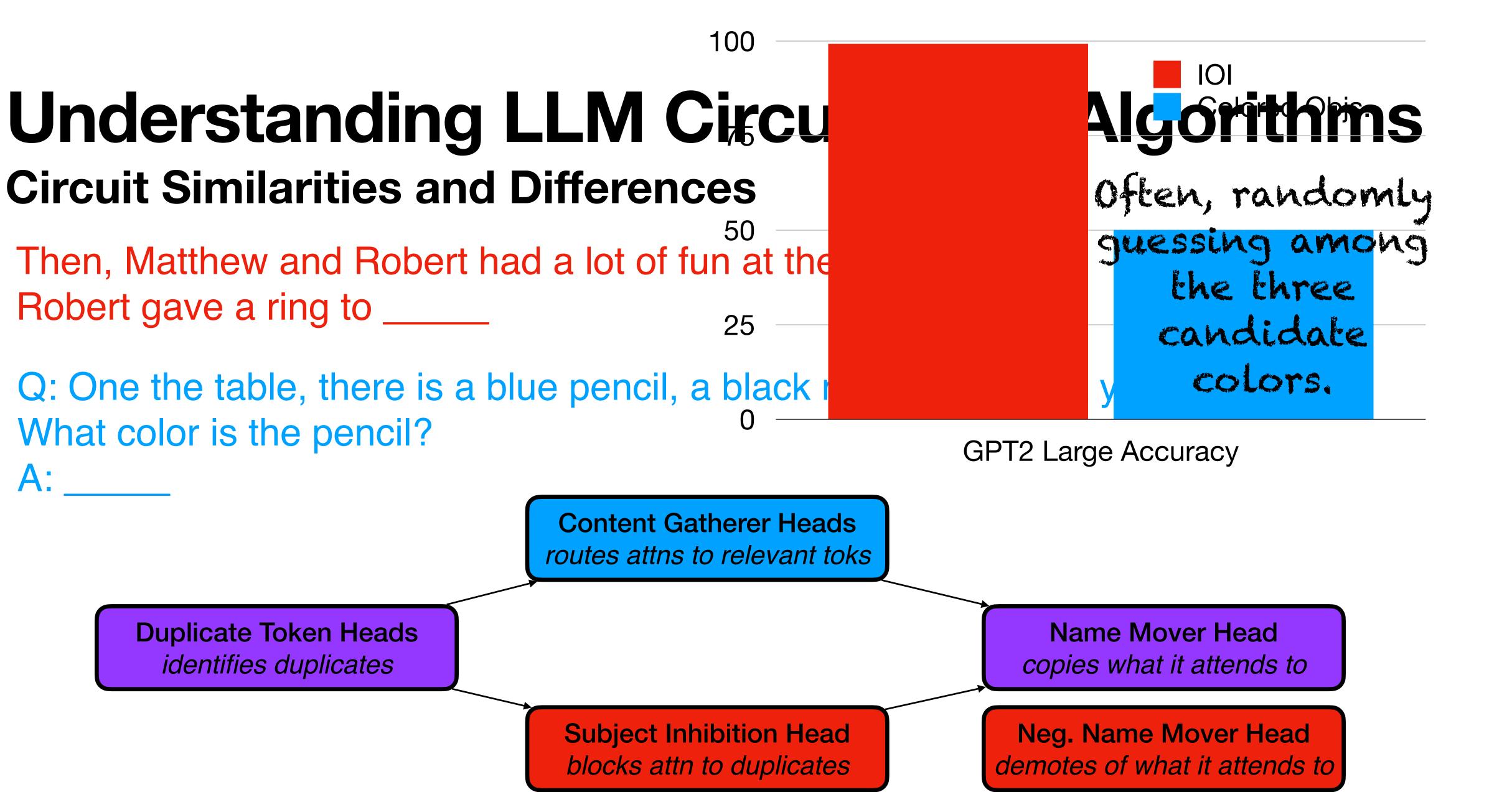
- Then, Matthew and Robert had a lot of fun at the school. Robert gave a ring to _____
- What color is the pencil? A:



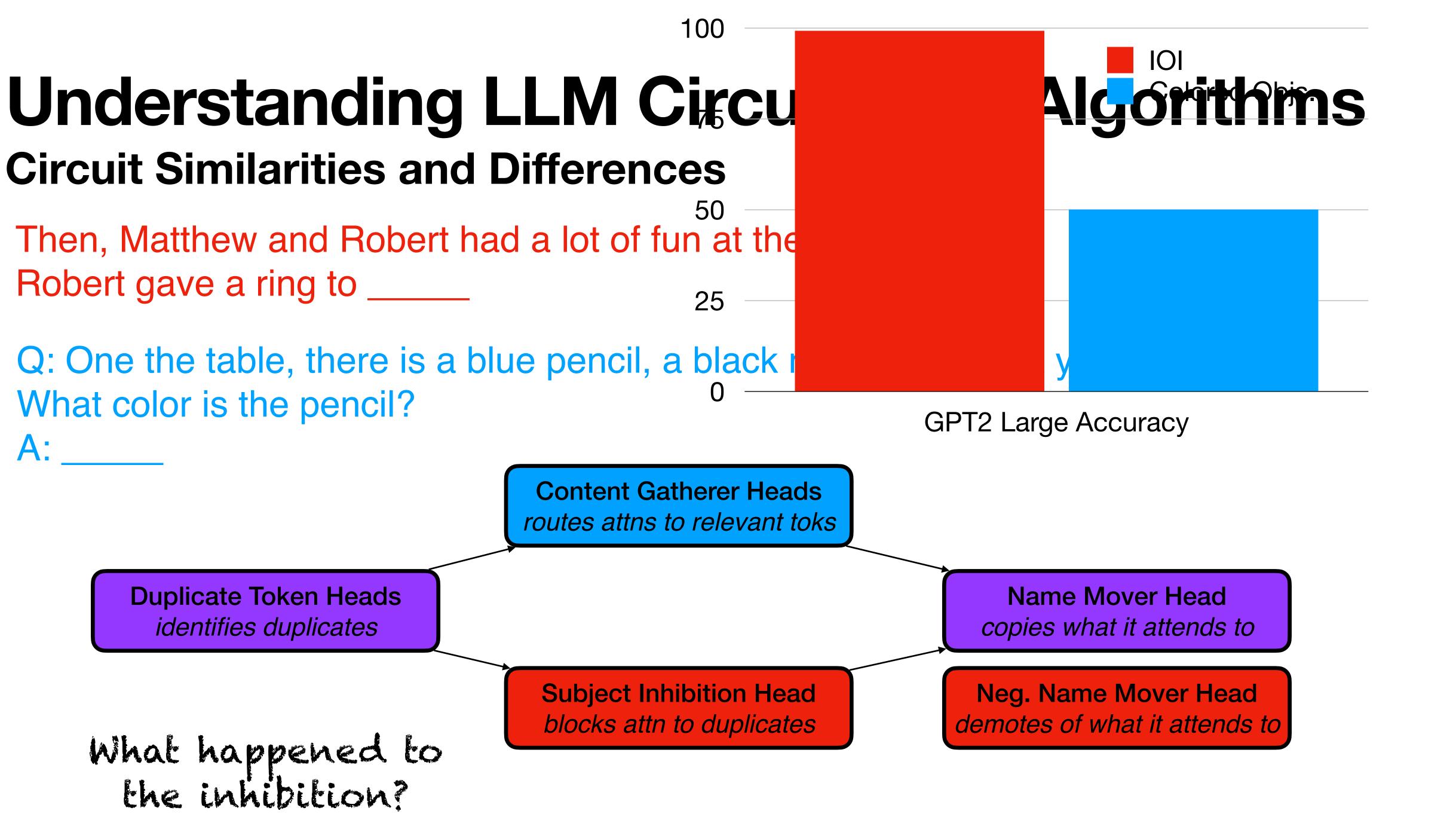
- Robert gave a ring to _
- What color is the pencil? **A**:



- Robert gave a ring to _____
- What color is the pencil? A:

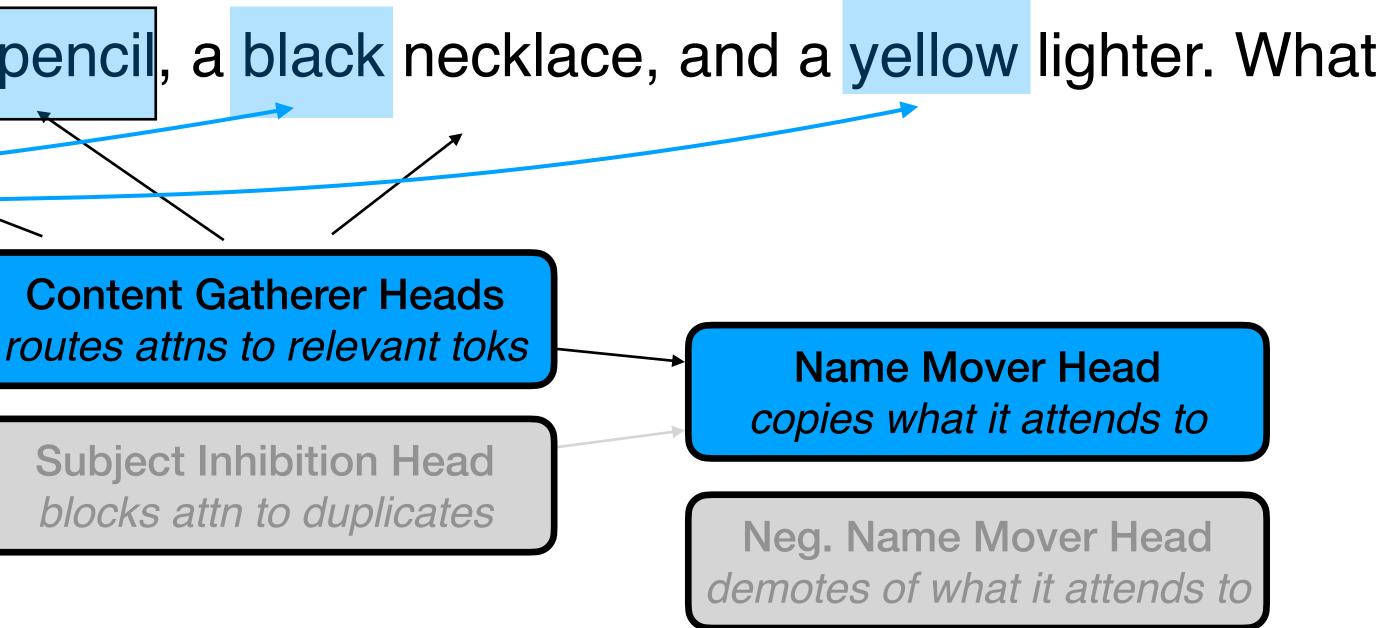


- Robert gave a ring to _
- What color is the pencil? **A**:



Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What color is the textbook? A: Orange Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What color is the pencil? A:

Duplicate Token Heads *identifies duplicates*

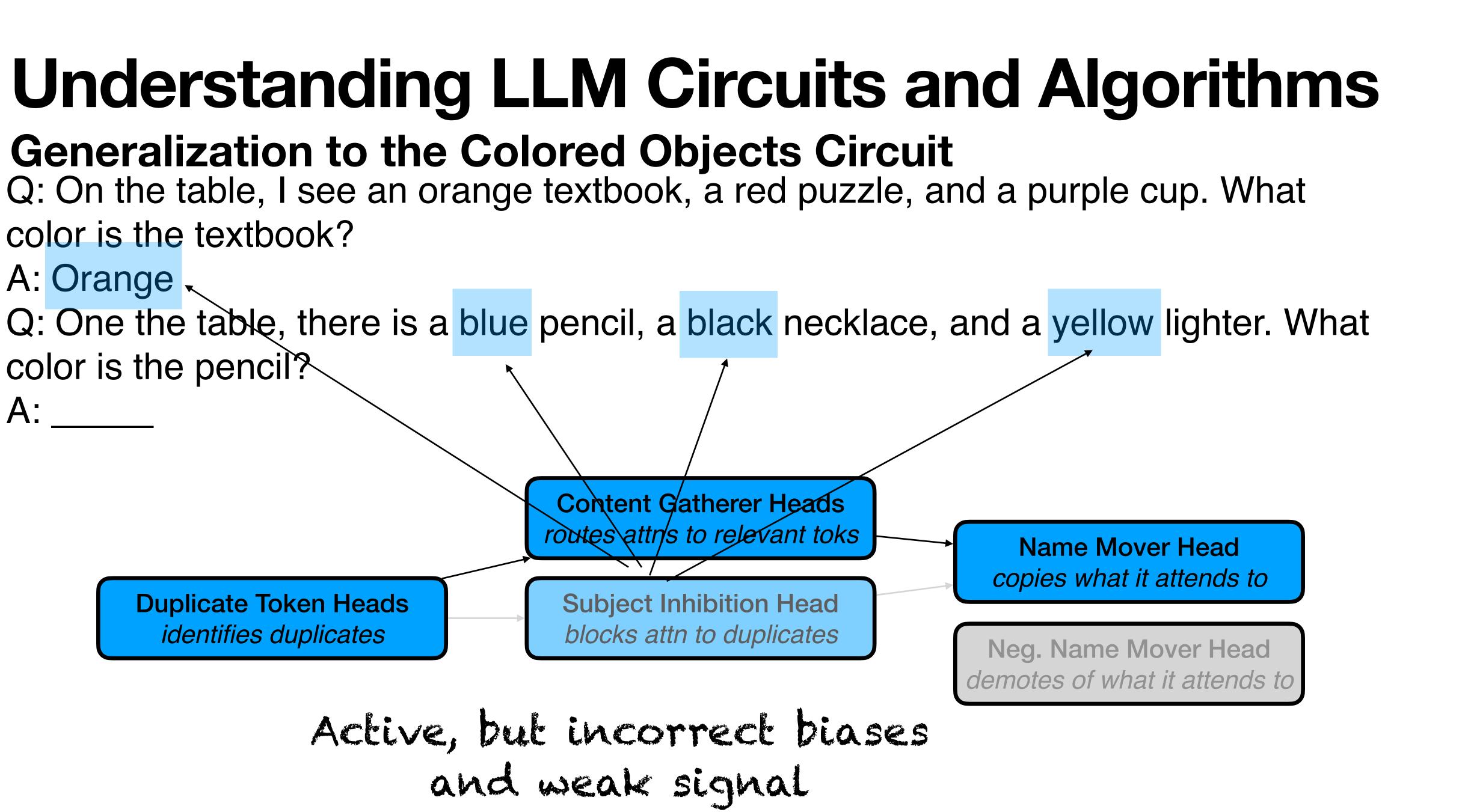


Generalization to the Colored Objects Circuit color is the textbook? A: Orange color is the pencil?

> **Duplicate Token Heads** *identifies duplicates*

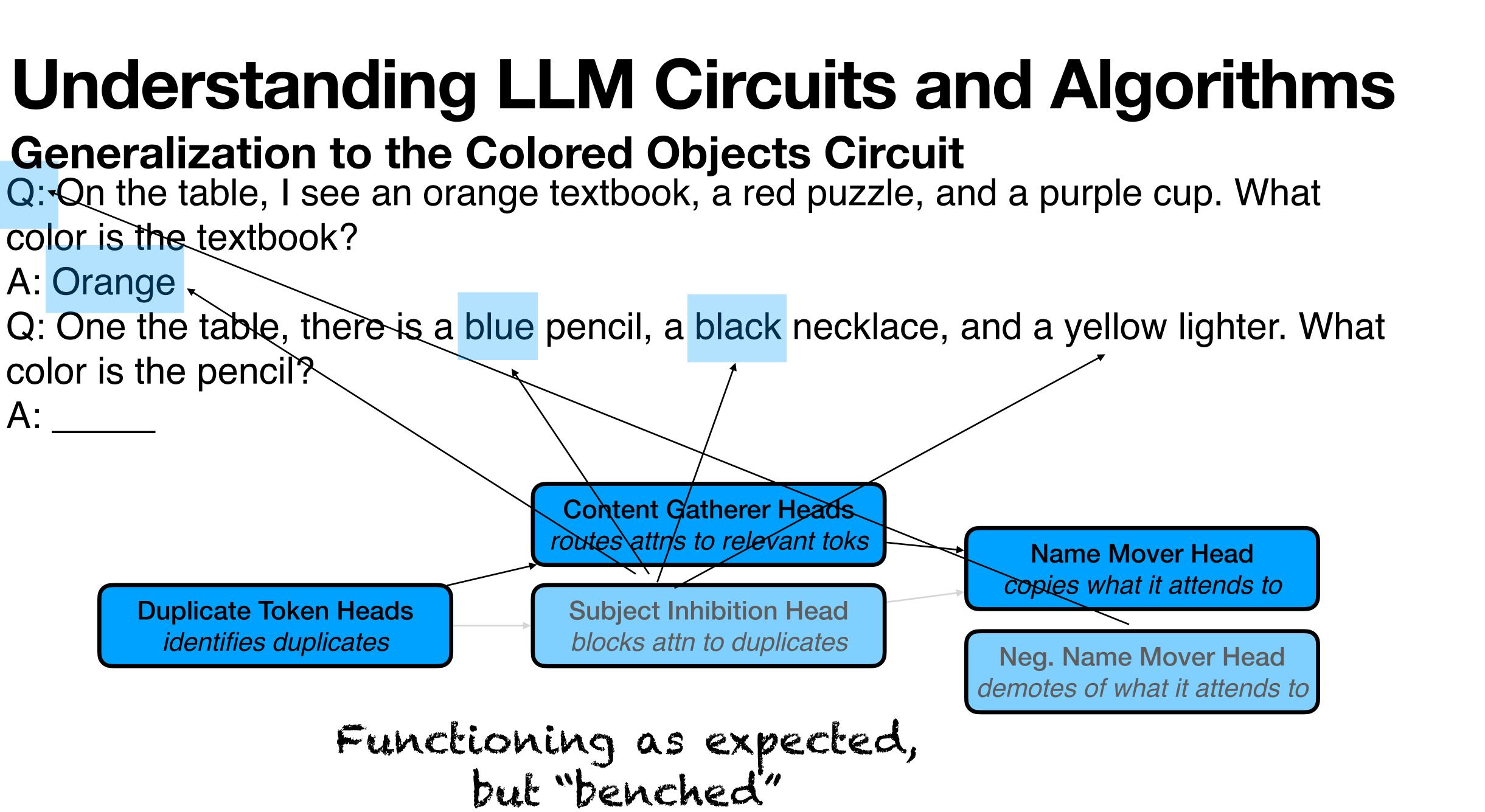
A:

Active, but incorrect biases and weak signal



Generalization to the Colored Objects Circuit color is the textbook? A: Orange color is the pencil? A: **Duplicate Token Heads** *identifies duplicates*

Functioning as expected, but "benched"



Generalization to the Colored Objects Circuit color is the textbook?

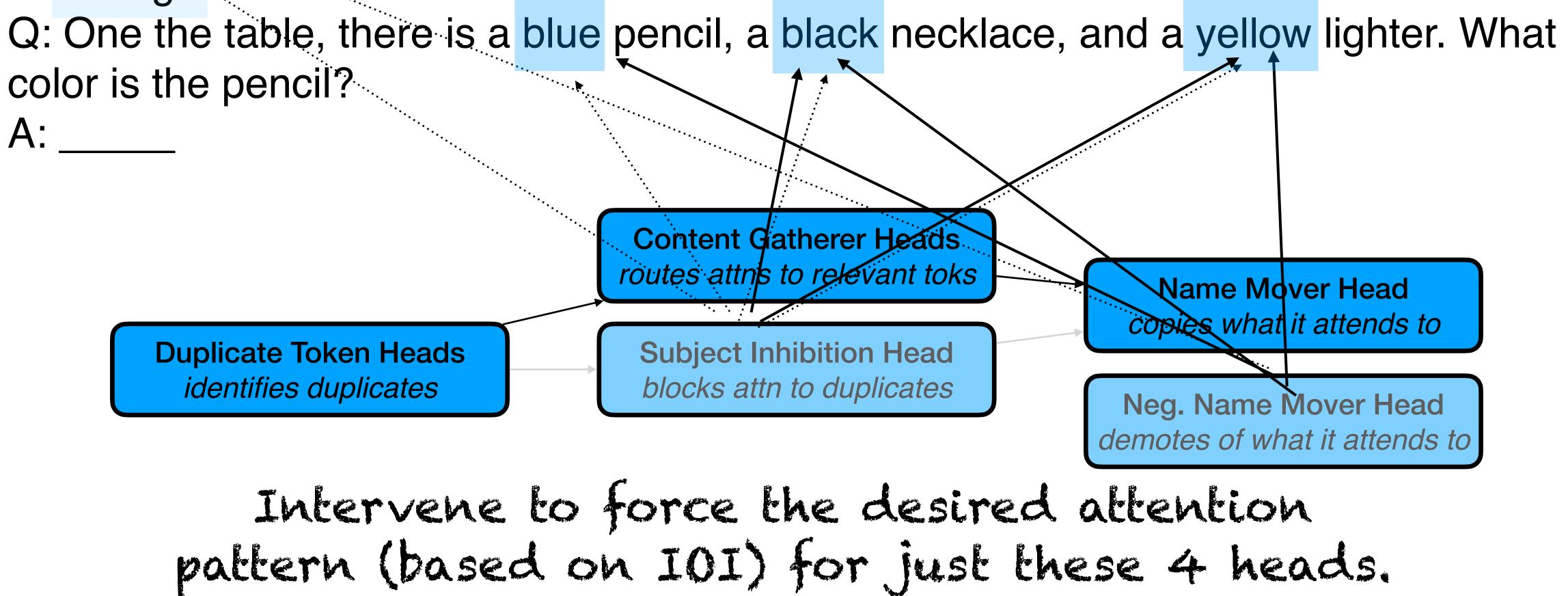
A: Orange .

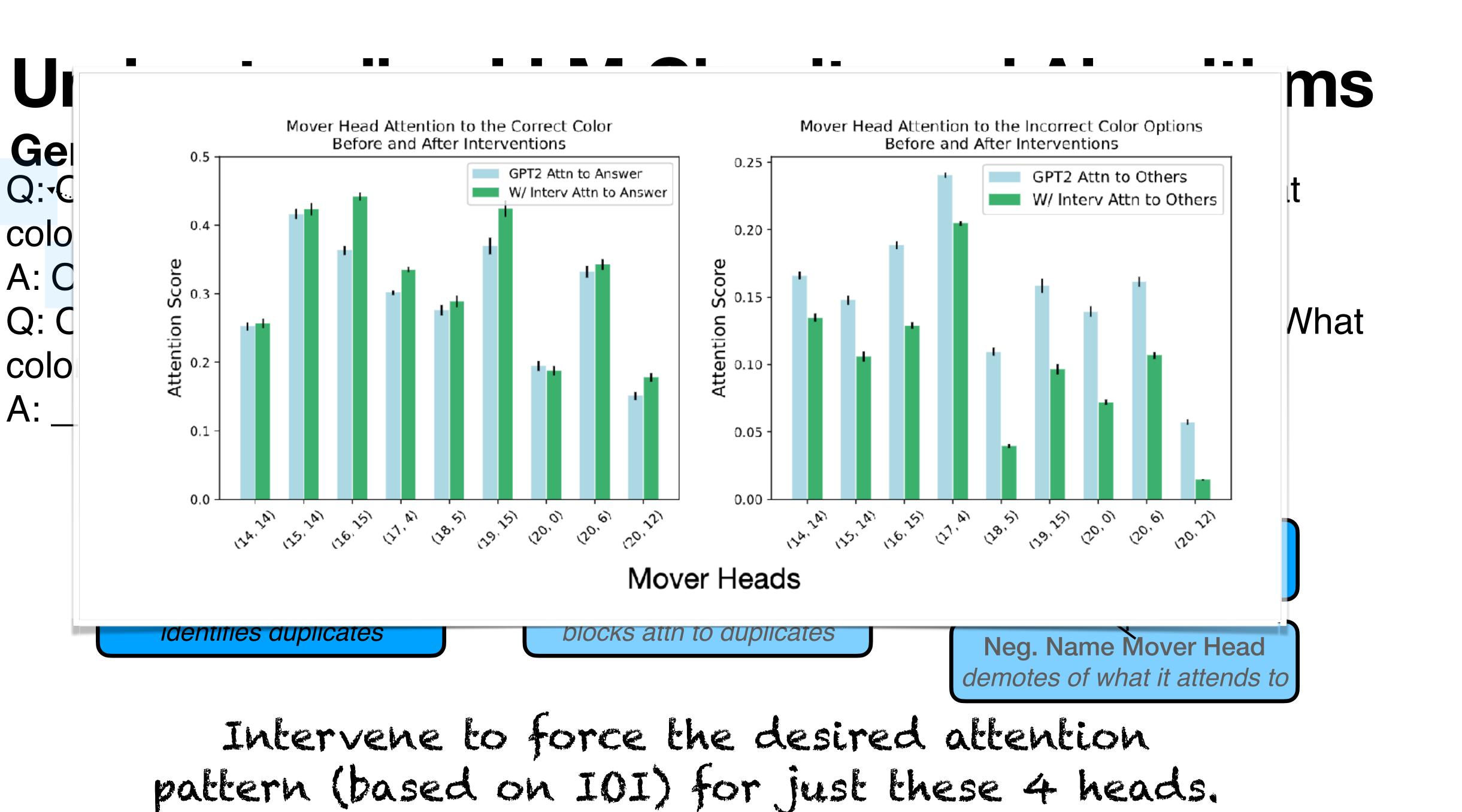
A:

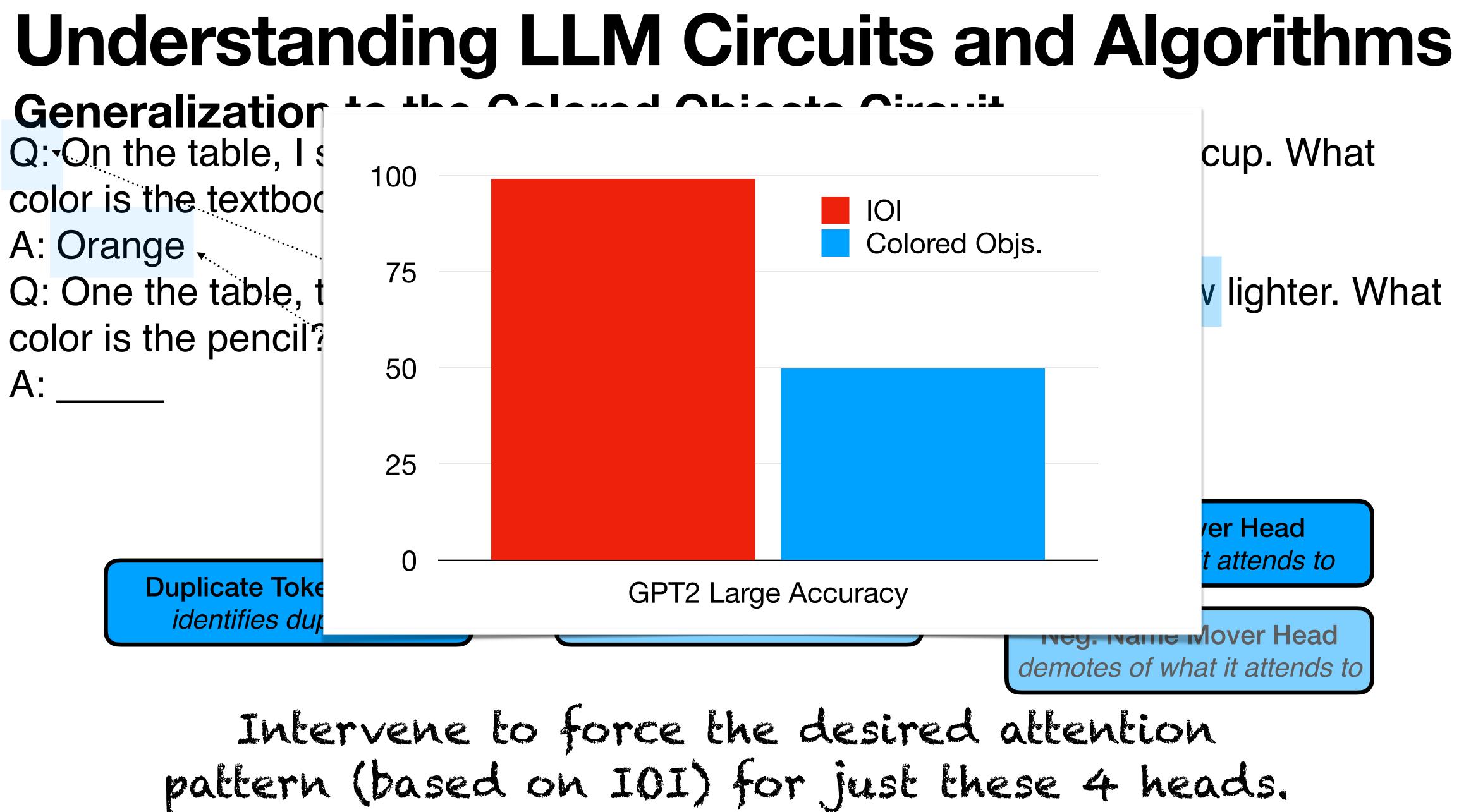
color is the pencil?

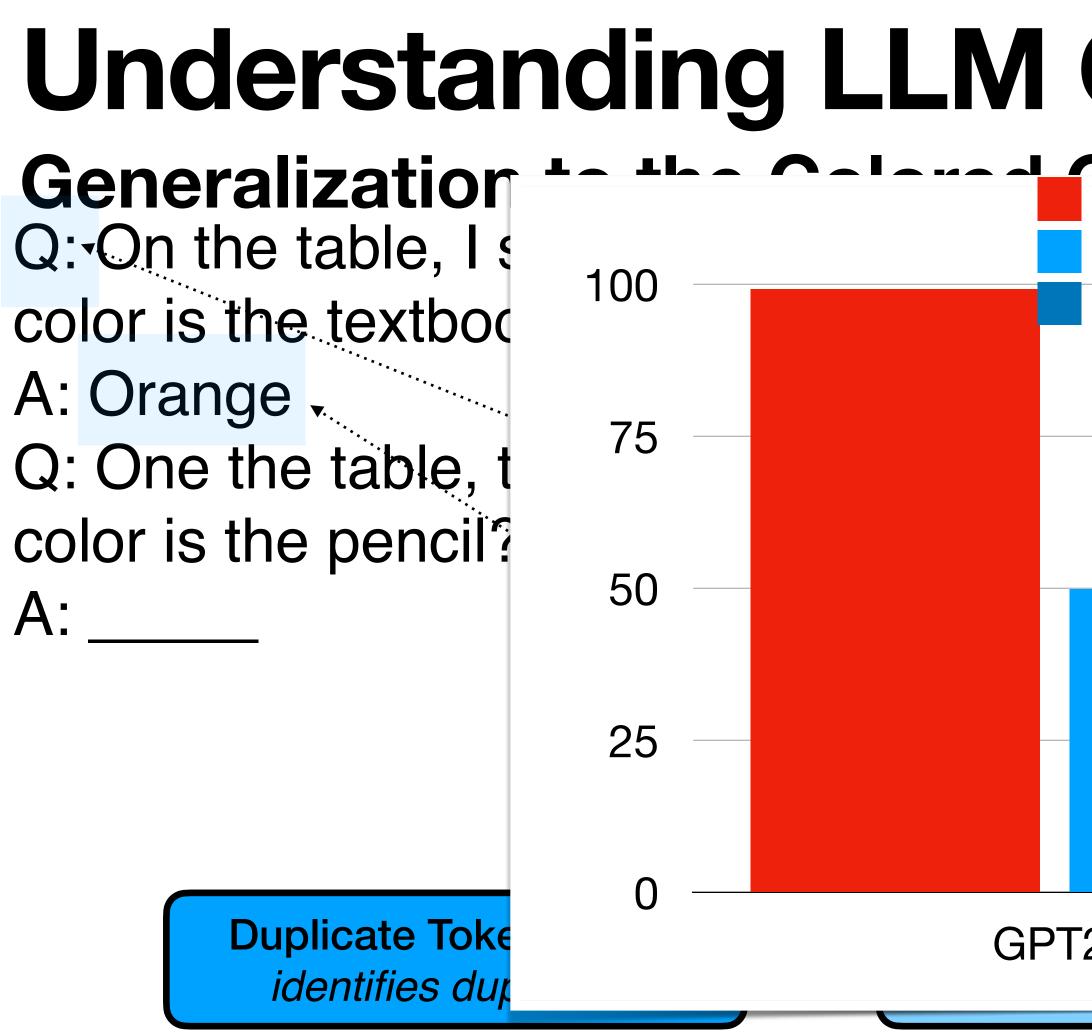
Duplicate Token Heads *identifies duplicates*

Understanding LLM Circuits and Algorithms Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What









Understanding LLM Circuits and Algorithms 101 cup. What Colored Objs. CO after Inter. V lighter. What ver Head attends to GPT2 Large Accuracy Neg. Name Nover Head demotes of what it attends to Intervene to force the desired attention pattern (based on IOI) for just these 4 heads.

Understanding LLM Circuits and Algorithms Summary and Discussion

- There is evidence that individual circuit components can be modular and generic, and reused across tasks
- This reuse gives us insight into the algorithmic "building blocks" of Transformers, which might not match our intuitions (e.g., from linguistics) about how tasks decompose into subtasks, and which can explain otherwise arbitrary-seeming behaviors like sensitivity to prompts
- Mending a "broken" circuit can have substantial effects on performance
- Follow up work in progress:
 - Why doesn't the LLM learn to the correct circuit itself (hypothesis: undertrained/effect of scale/grokking)
 - Similarities to human neural mechanisms (emergent) capacity limits, chunking, primacy/ recency biases, content effects, curriculum effects....

Discussion

- LLMs are often assumed to be black boxes. They aren't.
- Interpretting LLMs in higher-level functional terms can offer insight into the "neurocircuitry" and "cognition" of LLMs...
- ...which might substantially transform future work in theory, engineering, safety, and even the science of human language and cognition
- But its a long game! So much still unknown:
 - Methods are new and primitive. We cannot take results for granted.
 - We don't know what we are looking for, or have good metrics of success.
 - Moving targets. Models keep changing, and interpretability results don't always generalize
- But problems that are long-term and challenging are good things for scientists! Lots of reasons to be excited and optimistic :)

Thank you!

Qinan Yu

Jack Merullo

Carsten Eickhoff