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Why care about what’s inside the black box?

1. Curiosity :)

2. Safety — Understanding the “source code” can help us anticipate when and how
things might go wrong

3. Theory — Boiling LLMs down into computational building blocks might enable us
to develop more principled mathematical theories of representations and learning

4. Engineering — Knowing how things work could allow us to acheive the same
results more quickly, reliably, cheaply

5. Cognitive, Linguistic, Neuro- Science — Al could serve as a source of new
hypotheses and theories about the nature of language and cognition in general
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Neural Nets for Sequence Modeling

Recurrenk Neural Nebtworlk
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Cats like to drink

skart eind

Assumy%&ov\ #1:
(Compute) time goes
left to right



Mental model of LLMs

Neural Nets for Sequence Modeling

Recurrenk Neural Nebtworlk

increasingly context-
specific representation
of “Calks”

Cats like to drink
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Mental model of LLMs

Neural Nets for Sequence Modeling

Recurrent Neural Networik Transformer
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Transformer Architecture

Cats like to drink




Mental model of LLMs

Transformer Architecture

Feedforward Network (FFN)

Attention Mechanism (Attn)

Cats like to drink
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Transformer Architecture
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Attention is a read-write mechanism, It reads from reqisters
ot one layer, and writes to registers in the next layer
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Feed forward neks pull i new “stuff’. le., add info
into the reqisters based own recall from training.
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Register content can, in theory, be anything:



Transformer Feed-Forward Layers Build Predictions by
Promoting Concepts in the Vocabulary Space
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Mental model of LLMs

Transformer Architecture Takeaways

e Attention Heads carry out reads-and-writes across layers.
Tokens can be viewed as arbitrary “registers”.

 FFNs pull in new information from training (stuff not in local
context).

* At each layer, we can get a kind of “print statement” showing
the effect of these intermediate computations by looking at the
effect on the residual stream
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Abstract Functions in LLMs
Task Setup

What is the capital of France?
Paris

What is the capital of Polana?
Warsaw



Abstract Functions in LLMs

Possible Mechanisms

Possibility #1: Models use idiomatic word associations to determine the
probability of the next word.

\F/)Vahria: Is the capital of France? P (Warsaw I Poland &

of & capital &
What is the capital of Pelanad? Qf Pcland &
Warsaw

capital of & ..)



Abstract Functions in LLMs

Possible Mechanisms

Possibility #2: Models infer an abstract function based on example, and
then apply it to the input.

What is the capital of France?

£

DAaris | £ (France) = Paris

What is the capital of Poland? f (Poland) = Warsaw

warsaw



Abstract Functions in LLMs
Deepdive into FFN Update Warsaw
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What IS the capital of Poland



Abstract Functions in LLMs
Deepdive into FFN Update

DN [N N N [ Xi#t " pomg — MWarsaw, Minsk, Kiev..}

Feedforward Network (FFN) | Additive update to
‘ T “residual skream”
(Greva et al, 2022)

Attention Mechanism (Attn)

LM
DO [ X " Heaq — (Poland, The, It...}

What IS the capital of Poland



Abstract Functions in LLMs

Processing across layers
Q: What is the capital of France?
A: Paris
Q: What is the capital of Poland?
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Abstract Functions in LLMs

Processing across layers

Q: What is the capital of France? Layer | Top Token
A: Paris 0 (
Q: What is the capital of Poland? 1 A
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Processing across layers

Q: What is the capital of France?
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Processing across layers

Q: What is the capital of France?

Layer | Top Token
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Mean Reciprocal Rank

Abstract Functions in LLMs

Processing across layers

—e— Argument

—— Answer Argument-Function Processing in the Last Token across Task/Models
GPT2-Small GPT2-Medium GPT2-Large GPT2-XL GPT-| Bloom
World 0.6 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6 -
Caplta|504 0.4 - 0.4 - 0.4 - 0.4 - 0.4 -
: 0 6 2 _ 0 12 24 _ 0 18 3% _ 0 24 P _ 0 14 8 _ 0 35 70
Upper— 0.6 - 0.6 0.6 0.6 - 0.6 0.6
casing o/
- 0 6 12 _ 0 12 24 _ 0 18 3% _ 0 24 8 _ 0 14 8 _ 0 35 70
PaSt 0.6 - 0.6 0.6 0.6 - 0.6 0.6
TeI"ISIng 0.4 1 0.4 1 0.4 1 0.4 0.4 1 0.4
- 0 6 12 _ 0 12 24 _ 0 18 3% _ 0 24 O _ 0 14 8 _ 0 35 70

Layer
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Causal Interventions

Warsaw China
T T
Language Language
Modeling Head Modeling Head

What is the capital of Poland beep boop China beep boop
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Causal Interventions

Warsaw Beijing
| |
Language Language
Modeling Head Modeling Head

What is the capital of Poland beep boop China beep boop



Abstract Functions in LLMs

Causal Interventions

table mug free China table mug free China table mug free
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Consistently applies the same function, evein
for new arquments.



Abstract Functions in LLMs
Causal Interventions

Random Tokens Pattern Task

Mapping Locations to their Capital Cities Mapping Tokens to Capitalized Forms Mapping Verbs to Past Tense
0.9 0.9 0.9
—e— Control World Capitals —e— Control Color Words —e— Control Regular Verbs
0.8 1 —e— o4ty Interv. World Capitals 0.8 1 —— 0ypper Interv. Color Words 0.8 9 —e— o0ypper Interv. Regular Verbs
074 % Control US State Capitals 0.7 4 —#*— Control Non-Color Words —&— Control lIrregular Verbs
A —&— Oty Interv. US State Capitals —&— Oypper INterv. Non-Color Words —a&— Opast Interv. Irregular Verbs
G 06 - 0.6 -
@ ©
ad
— 0.5 - 0.5 1
©
U
Q0.4 -
=
U 0.3
&
0.2 -
0.1 -
0,0“ ----------“6'—-

11

12

13

14 -
15 -
16 4
17 -
18 -
19 -+
20 4
21 4
22
23 -

O -tN M N O~ o
—

Same pattern form many tasks (not just
cau%&rvwcapi&at Lc;:»owu[ﬂ)
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Abstract Functions in LLMs

#not all relations

Animal Hypernyms

0 5 10 15 20

Though doesnt necessarily transter to one-
&meav\j or mo\mv%cwame relations

1.0 A

0.8 -

0.6 -
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#not all relations

Extractive Abstractive

The capital of China is Beijing.

What is the capital of China? What is the capital of China?
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Extractive Abstractive

The capital of China is Beijing.
What is the capital of China?

What is the capital of China?
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Abstract Functions in LLMs

#not all relations

GPT2-Small (124M) GPT2-Medium (355M) GPT2-Large (774M)
20 ‘ - Extractive 40 1 —@— Extractive 40 ~#— Extractive -

~&— Abstractive ~— Abstractive -~ Abstractive

20 7

Accuracy
—
-
|

0 T T O T T 0 ) T
0 0.5 1 0 0.5 1 0 0.5 1
Proportion of FFNs Intact Proportion of FFNs Intact Proportion of FFNs Intact
GPT2-XL (1.5B) GPT-) (6B) Bloom (176B)
40 1 -@~ Extractive -@— Extractive f— 75 | -~ Extractive
a ~@~ Abstractive ~@— Abstractive ( -&~- Abstractive
: 40
C 50 -
5 207 -
O 20 1 4
g / 2
e , A ole—e "9 ¢ | oig—e—a—q .
0 0.5 1 0 0.5 1 0 0.5 1
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#not all relations

GPT2-Small (124M)
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01% 1 T
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o Abstractive
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0 0.5 1
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-@— Extractive "—
a0 4 ~#— Abstractive
20 1
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0 0.5 1

GPT2-Large (774M)
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-~ Abstractive |
20
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Abstract Functions in LLMs But play no role in

#not all relations

20

Accuracy

GPT2-Small (124M)

J ~®~ Extractive

-~ Abstractive

0 0.5 1
Proportion of FFNs Intact

GPT2-XL (1 5B)

Jd
40 -@~ Extractive

20 1
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j\/
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20
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20 1
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A~
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Abstract Functions in LLMs

Different Mechanism in Abstractive vs. Extractive Settings

Extractive Abstractive

The capital of China is Warsaw.
What is the capital of China?

What is the capital of China?
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Extractive Abstractive

The capital of China is Warsaw.

What is the capital of China? What is the capital of China?

could compekbe wikh
each other!
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Abstract Functions in LLMs

Different Mechanism in Abstractive vs. Extractive Settings

The capital of Poland is London.
What is the capital of Poland?
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Different Mechanism in Abstractive vs. Extractive Settings

Coum&ry

The capital of Poland is London.
What is the capital of Poland?




Abstract Functions in LLMs

Training data frequency affects which mechanism is used
Pythia-1.4b

As the count of
tow\%rj
tnereases, model
LS more Li;iw.i.v to
precﬁf:E Ehe
memorized
answer and less
Li;wetv to Predw% |
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Abstract Functions in LLMs

Training data frequency affects which mechanism is used

% Pythia-70m Pythia-160m Pythia-410m Pythia-1b Pythia-1.4b Pythia-2.8b
o _ _ _ _ _

Gg) Ag in-context answer

;U:‘.) ® memorized answer |

<

g o

-

O o¥]

o

[

O oF

Q.

o

b0 — —«- — — — - —«n»  — ¢ — - —«— «— +— > ———«— |V

al AT X AR AR 0‘%, AR X X X AP »

Percentile of Frequency

Trend appears to be associated with model size.
Larger models prefer memorized answers, but change
ﬂfrequ,@.m% countries first...




Abstract Functions in LLMs

Divide into 16
components
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16 Attention Heads

Unembed Matrix

Path Patching to Locate Important Attention Heads (Wang et al.)
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Abstract Functions In LLMs
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Abstract Functions in LLMs

Summary and Discussion

* \We focus on a simple but important step of language processing: retrieving
factual information from memory

* We find that Transformer LLMs appear to implement this step using a simple
linear update mechanism computer in the FFNs

 The computation is modular and generic. It can be transferred to new contexts in
a zero-shot manner.

* [t's use is modulated by independent, local, and (somewhat) controllable
mechanisms

* Serves as a proof of concept for how “black box” LLM behaviors can be
translated into interpretable, functional terms



This Talk

 Transformers and the “Mental Model of LLMs”
 Two Proofs of Concept:
* Abstract representation of relations

 Modular and reusable algorithmic “building blocks”
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Understanding LLM Circuits and Algorithms

Two Different Language Processing Tasks

Then, Matthew and Robert had a lot of fun at the school.
Robert gave a ring to

Wang et al. (2022)

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter.
What color is the pencil?
A:

lppolito and Callison-Burch (2023)
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Prior Work: The 10l Circuit

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to
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Duplicate Token/Induction Subject Inhibition Head
Heads Heads
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Matthew and Robert had a lot of fun at the school.

Robert gave a ring to Matthew.

1. ldentify any duplicated names.

2. Alert the S-Inhibition head of their location
3. Block attention to these duplicates

4. Attend to remaining names and copy
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Generalization to the Colored Objects Circuit

Q: On the table, | see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?

A: Orange

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What

color is the pencil?
A: Blue
Subject Inhibition Head -
blocks attn to duplicates
1. Identify any duplicated words. aemotes of what it attends 1o

2. Alert the Content Gatherer heads of their location
3. Promote attention to these duplicates
4. Attend to (color of) duplicate and copy
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Circuit Similarities and Differences

Then, Matthew and Robert had a lot of fun at the school.
Robert gave a ring to

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter.

What color is the pencil?
A:
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Generalization to the Colored Objects Circuit
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Generalization to the Colored Objects Circuit
Q:-Qn the table, | see an orange textbook, a red puzzle, and a purple cup. What

color is the textbook?

A: Orange

Q: One the table, there-s a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
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Functioning as expected,
but “benched”
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Generalization to the Colored Objects Circuit
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Summary and Discussion

* There is evidence that individual circuit components can be modular and generic, and reused
across tasks

* This reuse gives us insight into the algorithmic “building blocks” of Transformers, which might
not match our intuitions (e.g., from linguistics) about how tasks decompose into subtasks,
and which can explain otherwise arbitrary-seeming behaviors like sensitivity to prompts

 Mending a “broken” circuit can have substantial effects on performance
* Follow up work In progress:

 Why doesn’t the LLM learn to the correct circuit itself (hypothesis: undertrained/effect of
scale/grokking)

e Similarities to human neural mechanisms — (emergent) capacity limits, chunking, primacy/
recency biases, content effects, curriculum effects....



Discussion

| LMs are often assumed to be black boxes. They aren'’t.

* Interpretting LLMSs in higher-level functional terms can offer insight into the “neurocircuitry”
and “cognition” of LLMs...

e ...which might substantially transform future work in theory, engineering, safety, and even the
science of human language and cognition

* But its a long game! So much still unknown:
 Methods are new and primitive. We cannot take results for granted.
 We don’t know what we are looking for, or have good metrics of success.
 Moving targets. Models keep changing, and interpretabllity results don’t always generalize

 But problems that are long-term and challenging are good things for scientists! Lots of
reasons to be excited and optimistic :)



Thank you!

Jack Merullo
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Qinan Yu Carsten Eickhoff



