
Ellie Pavlick, November 25, 2024

Understanding Emergent
Structure in Large Language
Models

The neuro-symbolic tug-of-war

The neuro-symbolic tug-of-war

The neuro-symbolic tug-of-war

Transformers aren’t just webs of
associations

Transformers aren’t just webs of
associations

Transformers aren’t just webs of
associations

Key-Value Stores
Read-Write

Memory/Registers

Interpretable
algorithms playing out

over layers
Mutable “Knowledge

Bases”

Why care about what’s inside the black box?

1. Curiosity :)

2. Safety — Understanding the “source code” can help us anticipate when and how
things might go wrong

3. Theory — Boiling LLMs down into computational building blocks might enable us
to develop more principled mathematical theories of representations and learning

4. Engineering — Knowing how things work could allow us to acheive the same
results more quickly, reliably, cheaply

5. Cognitive, Linguistic, Neuro- Science — AI could serve as a source of new
hypotheses and theories about the nature of language and cognition in general

This Talk

• Transformers and the “Mental Model of LLMs”

• Two Proofs of Concept:

• Abstract representation of relations

• Modular and reusable algorithmic “building blocks”

This Talk

• Transformers and the “Mental Model of LLMs”

• Two Proofs of Concept:

• Abstract representation of relations

• Modular and reusable algorithmic “building blocks”

Mental model of LLMs
Neural Nets for Sequence Modeling

to drink ___Cats like

Recurrent Neural Network

Mental model of LLMs
Neural Nets for Sequence Modeling

to drink ___Cats like

Recurrent Neural Network

Assumption #1:
(Compute) time goes

left to right

start end

Mental model of LLMs
Neural Nets for Sequence Modeling

to drink ___Cats like

Recurrent Neural Network

Assumption #2:
Token embeddings
represent words

start end

increasingly context-
specific representation

of “Cats”

Mental model of LLMs
Neural Nets for Sequence Modeling

to drink ___Cats like

Recurrent Neural Network

to drink ___Cats like

Transformer

Mental model of LLMs
Neural Nets for Sequence Modeling

to drink ___Cats like

Mental model of LLMs
Transformer Architecture

to drink ____Cats like

Attention Mechanism (Attn)

Feedforward Network (FFN)

Mental model of LLMs
Transformer Architecture

to drink ___Cats like

Mental model of LLMs
Transformer Architecture

to drink ___Cats like

drinkcats

cats drink

milk

Attention is a read-write mechanism. It reads from registers
at one layer, and writes to registers in the next layer.

Mental model of LLMs
Transformer Architecture

to drink ___Cats like

drinkcats

cats drink

milk

Attention is a read-write mechanism. It reads from registers
at one layer, and writes to registers in the next layer.

Mental model of LLMs
Transformer Architecture

Mental model of LLMs
Transformer Architecture

to drink ___Cats like

drinkcats

cats drink

milk

FFN FFN FFN
FFN

+milk,
meow

FFN

FFN FFN FFN FFN FFN

Feed forward nets pull in new “stuff”. I.e., add info
into the registers based on recall from training.

Mental model of LLMs
Transformer Architecture

to drink ___Cats like

drinkcats

cats drink

milk

FFN FFN FFN
FFN

+milk,
meow

FFN

FFN FFN FFN FFN FFN

(Compute) time goes bottom to top

start

end

Mental model of LLMs
Transformer Architecture

to drink ___Cats like

to drink ____cats like

??? ??? ?????? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

Register content can, in theory, be anything!

start

end

Mental model of LLMs
Transformer Architecture

to drink _______Cats like

Residual Stream

the

a

of

.

(

#

<html>

.

.

.

Each layer
makes an

intermediate
update to the

predicted
next token
in vocab

space. This
“residual
stream” is

the input to
the next
layer.

to drink _______Cats like

Residual Stream

water

beer

soda

milk

juice

wine

bourbon

.

.

.

Mental model of LLMs
Transformer ArchitectureEach layer
makes an

intermediate
update to the

predicted
next token
in vocab

space. This
“residual
stream” is

the input to
the next
layer.

to drink _______Cats like

Residual Stream

water

juice

milk

soda

wine

beer

bourbon

.

.

.

Mental model of LLMs
Transformer ArchitectureEach layer
makes an

intermediate
update to the

predicted
next token
in vocab

space. This
“residual
stream” is

the input to
the next
layer.

to drink _______Cats like

Residual Stream

milk

water

juice

soda

wine

beer

bourbon

.

.

.

Mental model of LLMs
Transformer ArchitectureEach layer
makes an

intermediate
update to the

predicted
next token
in vocab

space. This
“residual
stream” is

the input to
the next
layer.

• Attention Heads carry out reads-and-writes across layers.
Tokens can be viewed as arbitrary “registers”.

• FFNs pull in new information from training (stuff not in local
context).

• At each layer, we can get a kind of “print statement” showing
the effect of these intermediate computations by looking at the
effect on the residual stream

Mental model of LLMs
Transformer Architecture Takeaways

This Talk

• Transformers and the “Mental Model of LLMs”

• Two Proofs of Concept:

• Abstract representation of relations

• Modular and reusable algorithmic “building blocks”

Jack Merullo

Qinan Yu

Abstract Functions in LLMs

Carsten Eickhoff

Jack Merullo

Qinan Yu

Abstract Functions in LLMs

Carsten Eickhoff

Abstract Functions in LLMs
Task Setup

Possibility #1: Models use idiomatic word associations to determine the
probability of the next word.

P(Warsaw|Poland &
of & capital & …

of Poland &
capital of & …)

Abstract Functions in LLMs
Possible Mechanisms

Possibility #2: Models infer an abstract function based on example, and
then apply it to the input.

f | f(France) = Paris

f(Poland) = Warsaw

Abstract Functions in LLMs
Possible Mechanisms

Feedforward Network (FFN)

the capital of PolandWhat is

Attention Mechanism (Attn)

LM
Head

Warsaw

FFNi

Xi

oi

Xi+1Xi+1

Xi

Abstract Functions in LLMs
Deepdive into FFN Update

Feedforward Network (FFN)

the capital of PolandWhat is

Attention Mechanism (Attn)

{Warsaw, Minsk, Kiev…}Xi+1

Xi

Additive update to
“residual stream”
(Geva et al, 2022)

LM
Head

{Poland, The, It…}LM
Head

Abstract Functions in LLMs
Deepdive into FFN Update

Abstract Functions in LLMs
Processing across layers

Early
Preparation
(“Grokking”)

Abstract Functions in LLMs
Processing across layers

Argument
Formation

Abstract Functions in LLMs
Processing across layers

Function
Application

Abstract Functions in LLMs
Processing across layers

Saturation

Abstract Functions in LLMs
Processing across layers

Figure 3: Argument formation and function application is characterized by a promotion of the argument (red)
followed by it being replaced with the answer token (blue), forming an X when plotting reciprocal ranks. Across the
three tasks we evaluate, we see that most of the models exhibit these traces, and despite the major differences in
model depths, the stages occur at similar points in the models. Data shown is filtered by examples in which the
models got the correct answer.

random tokens (with leading spaces) followed by
a token x which represents a potential argument
to the function of interest. For example, in experi-
ments involving ocity, we might include a sequence
such as table mug free China table mug free
China table mug free. This input primes the
model to produce “China” at the top of the resid-
ual stream, but provides no cues that the capital
city is relevant, and thus allows us to isolate the ef-
fect of ocity in promoting “Beijing” in the residual
stream. In addition to the original categories, we
also include an “out-of-domain” dataset for each
task: US states and capitals, 100 non-color words,
and 128 irregular verbs. These additional data test
the sensitivity of the ~o vectors to different types of
arguments.

Results: Figure 4 shows results for a single ex-
ample. Here, we see that “Beijing” is promoted all
the way to the top of the distribution solely due to
the injection of ~ocity into the forward pass. Figure
5 shows that this pattern holds in aggregate. In all
settings, we see that the outputs of the intended
functions are strongly promoted by adding the cor-
responding ~o vectors. By the last layer, for world
and state capitals, the mean reciprocal rank of the
target city name across all examples improves from
roughly the 10th to the 3rd-highest ranked word
and 17th and 4th-ranked words respectively. The
target output token becomes the top token in 21.3%,
53.5%, and 7.8% of the time in the last layer in the
world capitals, uppercasing, and past tensing tasks,

Figure 4: The gray area indicates layers with the FFN
intervention. Even if the input context is nonsense (re-
peating pattern), when “China" is represented in the
residual stream, the ~ocity vector promotes the correct
capital city.
respectively.

We also see the promotion of the proper past
tense verbs by ~opast. The reciprocal ranks improve
similarly for both regular (approx. 7th to 3rd rank)
and irregular verbs (approx. 6th to 3rd), indicat-
ing that the relationship between tenses is encoded
similarly by the model for these two types. ~oupper
promotes the capitalized version of the test token
almost every time, although the target word starts
at a higher rank (on average, rank 5). These results
together show that regardless of the surrounding
context and the argument to which it is applied, ~o
vectors consistently apply the expected functions.
Since each vector was originally extracted from
the model’s processing of a single naturalistic in-

Abstract Functions in LLMs
Processing across layers

Language
Modeling Head

the capital of PolandWhat is

FFN that
appears to

apply function

Abstract Functions in LLMs
Causal Interventions

Abstract Functions in LLMs
Causal Interventions

Language
Modeling Head

Warsaw

the capital of PolandWhat is

Abstract Functions in LLMs
Causal Interventions

Language
Modeling Head

Warsaw

the capital of PolandWhat is

Abstract Functions in LLMs
Causal Interventions

Language
Modeling Head

Warsaw

the capital of PolandWhat is

Language
Modeling Head

China

China beep boopbeep boop

Abstract Functions in LLMs
Causal Interventions

Language
Modeling Head

Beĳing

China beep boopbeep boop

Language
Modeling Head

Warsaw

the capital of PolandWhat is

Abstract Functions in LLMs
Causal Interventions

Consistently applies the same function, even
for new arguments.

Abstract Functions in LLMs
Causal Interventions

Same pattern form many tasks (not just
country->capital lookup)

Abstract Functions in LLMs
Causal Interventions

Though doesn’t necessarily transfer to one-
to-many or many-to-one relations

Figure 16: When the uppercase version of a word gets broken down into multiple subtokens, mapping to that token
becomes much less probable and is generally harder of an association for the model to make.

Task Example
Animal Hypernyms ...Q: The anaconda is a kind of what?\nA: (snake/reptile/boa/...)
Name to Nationality ...Q: What is the nationality of Balzac?\nA: (French)
Country to Language ...Q: What is the official language of Argentina?\nA: (Spanish)

Adj. to un-Adj. ...Q: What is the opposite of able?\nA: (unable)
3rd Person Verbs ...Q: What is the third person singular of become?\nA: (becomes)

Noun Plurals ...Q: What is the plural of album?\nA: albums

Table 2: Examples from three non-injective and one injective relation. A given animal (anaconda) is a type of snake
and reptile, and other snakes/reptiles also exist (many-to-many). Balzac is only French and other people map to
French (many-to-one), etc.

Task Accuracy (%) Task Type
Animal Hypernyms 30.4±1.7 Many-to-Many
Name to Nationality 73.2±2.0 Many-to-One
Country to Language 71.2±2.4 Many-to-Many

Adj. to un-Adj. 12.0±1.1 One-to-One
3rd Person Verbs 22.4±0.7 One-to-One

Noun Plurals 51.6±1.7 One-to-One

Table 3: One-shot accuracies for each task across 5 random seeds for GPT2-Medium.

Figure 17: Non-injective tasks show no evidence of argument-function processing on average. In sharp contrast to
the past tense, colored objects, capital cities, and un-adj. tasks where this is observed, here, the argument token
experiences virtually no spike in reciprocal rank in the intermediate layers.

Abstract Functions in LLMs
#not all relations

Extractive Abstractive

The capital of China is Beĳing.
What is the capital of China? What is the capital of China?

Abstract Functions in LLMs
#not all relations

The capital of China is Beijing.
What is the capital of China? What is the capital of China?

Extractive Abstractive

Abstract Functions in LLMs
#not all relations

the capital of PolandWhat is

FFN that
appears to

apply function

Language
Modeling Head

Abstract Functions in LLMs
#not all relations

Abstract Functions in LLMs
#not all relations

FFNs necessary for
performance on
Abstractive task

Abstract Functions in LLMs
#not all relations

But play no role in
Extractive task

Abstract Functions in LLMs
#not all relations

The capital of China is Warsaw.
What is the capital of China? What is the capital of China?

Extractive Abstractive

Different Mechanism in Abstractive vs. Extractive Settings
Abstract Functions in LLMs

The capital of China is Warsaw.
What is the capital of China? What is the capital of China?

Extractive Abstractive

could compete with
each other!

Different Mechanism in Abstractive vs. Extractive Settings
Abstract Functions in LLMs

The capital of China is Warsaw.
What is the capital of China? What is the capital of China?

Extractive Abstractive

could compete with
each other!

Different Mechanism in Abstractive vs. Extractive Settings
Abstract Functions in LLMs

The capital of Poland is London.
What is the capital of Poland?

Different Mechanism in Abstractive vs. Extractive Settings
Abstract Functions in LLMs

The capital of Poland is London.
What is the capital of Poland?

Different Mechanism in Abstractive vs. Extractive Settings

London
Warsaw

In-Context Answer
Memorized Answer

Country

Abstract Functions in LLMs

Training data frequency affects which mechanism is used

Figure 3: The proportion of in-context and memorized answers decomposed by the frequency of country(Poland)
across all Pythia models of different sizes (the 2nd graph in figure 2). The upward trend of the red lines shows as the
model size increases, the model predicts more memorized answers. Blue and red shading indicates that the amount
of in-context or memorized answers is higher, respectively. We find that as models get bigger, they first memorize
more frequent capitals before the lower frequency ones.

examples per bin. To give some qualitative ex-217

amples, capitals like Beijing are in the top per-218

centile bin as measured by occurrence, while capi-219

tals like Akrotiri and Dhekelia are in the bottom.220

For the co-occurrences between country and capi-221

tal, <China, Beijing> is in the top percentile and222

<Guinea-bissau, Bissau> is in the bottom per-223

centile.224

We run the counterfactual world capital data225

through both the Pythia models as well as the GPT2226

series of models. We generate the a full sentence227

by decoding the output. We count the number of228

time in-context and memorized answers appear in229

the decoded sentences and plot these counts as a230

function of the percentile bins described above.231

5.2 Results232

As the frequency for the country increases, there is233

more knowledge stored about the country during234

pertaining. Therefore, we intuitively expect to see235

that models are more inclined to predict the memo-236

rized answers as the frequency goes up. Figure 2237

supports this intuition. We can see a clear upward238

trend in the pink line, reflecting the increasing pro-239

portion of the memorized answers as a function of240

the increase in term frequency. When the country241

is more prevalent in the training data, the model has242

a greater tendency to predict memorized answers.243

We also observe a relationship between the fre-244

quency of the in-context capital and the model’s245

predictions. As the frequency for either the country246

or the in-context capital increases, the number of247

in-context answer predictions decreases. This is248

demonstrated by the drop of the blue lines in Fig-249

ure 2. When the given in-context capital is more250

prevalent in the training data, for example Beijing,251

the model tends to predict the memorized answer. 252

However, when the given in-context capital is less 253

prevalent such as Palikir, it is more likely to pre- 254

dict the in-context answer. We ran the same exper- 255

iments across all the Pythia and GPT2 models of 256

different sizes (see Appendix A) and see the same 257

frequency effect, especially in larger models. 258

Figure 3 shows the increase in sensitivity to fre- 259

quency with respect to model size. We find that as 260

models increase in size, they become more likely 261

overall to produce the memorized answers rather 262

than in-context answers, and that this occurs with 263

the most frequent countries. That is, as larger 264

models become more likely to produce the memo- 265

rized answer, the changes are not evenly distributed 266

across frequency bins. Rather, a strong memoriza- 267

tion bias is observed first for more frequent terms, 268

and then as models get larger, this extends to in- 269

creasingly lower frequency terms. This can be 270

observed in transition from blue shading (more in- 271

context answers) to red shading (more memorized 272

answers). See Appendix B.1 for results showing 273

this effect with respect to the frequency of cities 274

and co-occurrences, where we observe the same 275

trend. 276

6 Identifying and Manipulating 277

Mechanisms for Recall 278

So far we have shown that (larger) models tend to 279

have a preference to use the answer they have mem- 280

orized. In this section we ask if there is a specific 281

mechanism within the model that controls whether 282

the memorized or in-context answer is generated, 283

and whether that can be isolated from more gen- 284

eral language generating abilities. Because the task 285

boils down to whether the model copies informa- 286

4

As the count of
country

increases, model
is more likely to

predict the
memorized

answer and less
likely to predict
the in-context

one

Abstract Functions in LLMs

Figure 3: The proportion of in-context and memorized answers decomposed by the frequency of country(Poland)
across all Pythia models of different sizes (the 2nd graph in figure 2). The upward trend of the red lines shows as the
model size increases, the model predicts more memorized answers. Blue and red shading indicates that the amount
of in-context or memorized answers is higher, respectively. We find that as models get bigger, they first memorize
more frequent capitals before the lower frequency ones.

examples per bin. To give some qualitative ex-217

amples, capitals like Beijing are in the top per-218

centile bin as measured by occurrence, while capi-219

tals like Akrotiri and Dhekelia are in the bottom.220

For the co-occurrences between country and capi-221

tal, <China, Beijing> is in the top percentile and222

<Guinea-bissau, Bissau> is in the bottom per-223

centile.224

We run the counterfactual world capital data225

through both the Pythia models as well as the GPT2226

series of models. We generate the a full sentence227

by decoding the output. We count the number of228

time in-context and memorized answers appear in229

the decoded sentences and plot these counts as a230

function of the percentile bins described above.231

5.2 Results232

As the frequency for the country increases, there is233

more knowledge stored about the country during234

pertaining. Therefore, we intuitively expect to see235

that models are more inclined to predict the memo-236

rized answers as the frequency goes up. Figure 2237

supports this intuition. We can see a clear upward238

trend in the pink line, reflecting the increasing pro-239

portion of the memorized answers as a function of240

the increase in term frequency. When the country241

is more prevalent in the training data, the model has242

a greater tendency to predict memorized answers.243

We also observe a relationship between the fre-244

quency of the in-context capital and the model’s245

predictions. As the frequency for either the country246

or the in-context capital increases, the number of247

in-context answer predictions decreases. This is248

demonstrated by the drop of the blue lines in Fig-249

ure 2. When the given in-context capital is more250

prevalent in the training data, for example Beijing,251

the model tends to predict the memorized answer. 252

However, when the given in-context capital is less 253

prevalent such as Palikir, it is more likely to pre- 254

dict the in-context answer. We ran the same exper- 255

iments across all the Pythia and GPT2 models of 256

different sizes (see Appendix A) and see the same 257

frequency effect, especially in larger models. 258

Figure 3 shows the increase in sensitivity to fre- 259

quency with respect to model size. We find that as 260

models increase in size, they become more likely 261

overall to produce the memorized answers rather 262

than in-context answers, and that this occurs with 263

the most frequent countries. That is, as larger 264

models become more likely to produce the memo- 265

rized answer, the changes are not evenly distributed 266

across frequency bins. Rather, a strong memoriza- 267

tion bias is observed first for more frequent terms, 268

and then as models get larger, this extends to in- 269

creasingly lower frequency terms. This can be 270

observed in transition from blue shading (more in- 271

context answers) to red shading (more memorized 272

answers). See Appendix B.1 for results showing 273

this effect with respect to the frequency of cities 274

and co-occurrences, where we observe the same 275

trend. 276

6 Identifying and Manipulating 277

Mechanisms for Recall 278

So far we have shown that (larger) models tend to 279

have a preference to use the answer they have mem- 280

orized. In this section we ask if there is a specific 281

mechanism within the model that controls whether 282

the memorized or in-context answer is generated, 283

and whether that can be isolated from more gen- 284

eral language generating abilities. Because the task 285

boils down to whether the model copies informa- 286

4

Trend appears to be associated with model size.
Larger models prefer memorized answers, but change

affects frequent countries first…

Training data frequency affects which mechanism is used
Abstract Functions in LLMs

Path Patching to Locate Important Attention Heads (Wang et al.)

Divide into 16
components

rh0 rh1 rh2 rh11

16 Attention Heads

 matrixWH
O

Wh0
O

Wh1
O

Wh2
O

Wh11
O

�

Head

Heat Map of Logit Difference

�
London

Warsaw

Unembed Matrix

�

�

La
ye

r

vLondon

vWarsaw

Figure 4: The head attribution method showing the logit difference calculation for layer 11, head 11 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

tion that was provided in context or not, we focus287

on analyzing the roles of specific attention heads.288

Prior work has demonstrated the importance of at-289

tention heads for performing copying tasks (Wang290

et al., 2022; Elhage et al., 2021) as well as recall291

from memory (Geva et al., 2023), which motivates292

our analysis of attention heads. We perform this293

analysis on only the largest models Pythia-1.4b,294

Pythia-2.8b, as well as GPT2-xl (see Appendix D).295

6.1 Head Attribution296

The idea behind logit attribution techniques (Nos-297

talgebraist, 2020; Wang et al., 2022; Nanda, 2022)298

is to interpret activations or weights in a language299

model in terms of the vocabulary space. These300

methods work by using the unembedding matrix301

(i.e., language modeling head) in order to under-302

stand the role of a given component for a given303

task. This is built on the premise that that the final304

hidden state of the model is the summation of the305

outputs of all of the components before it (Elhage306

et al., 2021). That is, every layer of output can be307

traced back and decomposed as the contribution308

of each sublayer up to that point. We use head309

attribution to test whether individual heads tend to310

promote either the in-context capital or the mem-311

orized capital. Using this method, we are able to312

find a single head in each model that that primarily313

controls the use of memorized information1. 314

In Figure 4, we illustrate the method. The addi- 315

tive update made by the attention layer is composed 316

of the individual updates of each attention head 317

after it is passed through the WH
O output matrix 318

within the attention layer. We can project the ith 319

head into the space of the residual stream by multi- 320

plying with the ith (dhead, dmodel) slice of this ma- 321

trix (see Appendix C) and then multiplying with the 322

unembedding matrix to get the logit values for the 323

memorized and in-context city tokens. We subtract 324

these two scalar values to get the logit difference 325

(see Wang et al. (2022)). 326

Intuitively, this logit difference captures the ef- 327

fect the head has in promoting one word (relative 328

to another) to be output as the final prediction. This 329

provides us a practical way to calculate the the role 330

of each head, and find heads that consistently push 331

the model towards the memorized or in-context 332

answer. 333

Data: To identify specific heads, we randomly 334

sample 10 examples from each percentile in each 335

model that predict in-context answers and 10 other 336

examples the predict memorized answers. Thus, in 337

total, we obtain 100 examples on which the original 338

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.

5

Abstract Functions in LLMs

Divide into 16
components

rh0 rh1 rh2 rh11

16 Attention Heads

 matrixWH
O

Wh0
O

Wh1
O

Wh2
O

Wh11
O

�

Head

Heat Map of Logit Difference

�
London

Warsaw

Unembed Matrix

�

�

La
ye

r

vLondon

vWarsaw

Figure 4: The head attribution method showing the logit difference calculation for layer 11, head 11 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

tion that was provided in context or not, we focus287

on analyzing the roles of specific attention heads.288

Prior work has demonstrated the importance of at-289

tention heads for performing copying tasks (Wang290

et al., 2022; Elhage et al., 2021) as well as recall291

from memory (Geva et al., 2023), which motivates292

our analysis of attention heads. We perform this293

analysis on only the largest models Pythia-1.4b,294

Pythia-2.8b, as well as GPT2-xl (see Appendix D).295

6.1 Head Attribution296

The idea behind logit attribution techniques (Nos-297

talgebraist, 2020; Wang et al., 2022; Nanda, 2022)298

is to interpret activations or weights in a language299

model in terms of the vocabulary space. These300

methods work by using the unembedding matrix301

(i.e., language modeling head) in order to under-302

stand the role of a given component for a given303

task. This is built on the premise that that the final304

hidden state of the model is the summation of the305

outputs of all of the components before it (Elhage306

et al., 2021). That is, every layer of output can be307

traced back and decomposed as the contribution308

of each sublayer up to that point. We use head309

attribution to test whether individual heads tend to310

promote either the in-context capital or the mem-311

orized capital. Using this method, we are able to312

find a single head in each model that that primarily313

controls the use of memorized information1. 314

In Figure 4, we illustrate the method. The addi- 315

tive update made by the attention layer is composed 316

of the individual updates of each attention head 317

after it is passed through the WH
O output matrix 318

within the attention layer. We can project the ith 319

head into the space of the residual stream by multi- 320

plying with the ith (dhead, dmodel) slice of this ma- 321

trix (see Appendix C) and then multiplying with the 322

unembedding matrix to get the logit values for the 323

memorized and in-context city tokens. We subtract 324

these two scalar values to get the logit difference 325

(see Wang et al. (2022)). 326

Intuitively, this logit difference captures the ef- 327

fect the head has in promoting one word (relative 328

to another) to be output as the final prediction. This 329

provides us a practical way to calculate the the role 330

of each head, and find heads that consistently push 331

the model towards the memorized or in-context 332

answer. 333

Data: To identify specific heads, we randomly 334

sample 10 examples from each percentile in each 335

model that predict in-context answers and 10 other 336

examples the predict memorized answers. Thus, in 337

total, we obtain 100 examples on which the original 338

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.

5

Path Patching to Locate Important Attention Heads (Wang et al.)

Divide into 16
components

rh0 rh1 rh2 rh11

16 Attention Heads

 matrixWH
O

Wh0
O

Wh1
O

Wh2
O

Wh11
O

�

Head

Heat Map of Logit Difference

�
London

Warsaw

Unembed Matrix

�

�

La
ye

r

vLondon

vWarsaw

Figure 4: The head attribution method showing the logit difference calculation for layer 11, head 11 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

tion that was provided in context or not, we focus287

on analyzing the roles of specific attention heads.288

Prior work has demonstrated the importance of at-289

tention heads for performing copying tasks (Wang290

et al., 2022; Elhage et al., 2021) as well as recall291

from memory (Geva et al., 2023), which motivates292

our analysis of attention heads. We perform this293

analysis on only the largest models Pythia-1.4b,294

Pythia-2.8b, as well as GPT2-xl (see Appendix D).295

6.1 Head Attribution296

The idea behind logit attribution techniques (Nos-297

talgebraist, 2020; Wang et al., 2022; Nanda, 2022)298

is to interpret activations or weights in a language299

model in terms of the vocabulary space. These300

methods work by using the unembedding matrix301

(i.e., language modeling head) in order to under-302

stand the role of a given component for a given303

task. This is built on the premise that that the final304

hidden state of the model is the summation of the305

outputs of all of the components before it (Elhage306

et al., 2021). That is, every layer of output can be307

traced back and decomposed as the contribution308

of each sublayer up to that point. We use head309

attribution to test whether individual heads tend to310

promote either the in-context capital or the mem-311

orized capital. Using this method, we are able to312

find a single head in each model that that primarily313

controls the use of memorized information1. 314

In Figure 4, we illustrate the method. The addi- 315

tive update made by the attention layer is composed 316

of the individual updates of each attention head 317

after it is passed through the WH
O output matrix 318

within the attention layer. We can project the ith 319

head into the space of the residual stream by multi- 320

plying with the ith (dhead, dmodel) slice of this ma- 321

trix (see Appendix C) and then multiplying with the 322

unembedding matrix to get the logit values for the 323

memorized and in-context city tokens. We subtract 324

these two scalar values to get the logit difference 325

(see Wang et al. (2022)). 326

Intuitively, this logit difference captures the ef- 327

fect the head has in promoting one word (relative 328

to another) to be output as the final prediction. This 329

provides us a practical way to calculate the the role 330

of each head, and find heads that consistently push 331

the model towards the memorized or in-context 332

answer. 333

Data: To identify specific heads, we randomly 334

sample 10 examples from each percentile in each 335

model that predict in-context answers and 10 other 336

examples the predict memorized answers. Thus, in 337

total, we obtain 100 examples on which the original 338

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.

5

Abstract Functions in LLMs

Divide into 16
components

rh0 rh1 rh2 rh11

16 Attention Heads

 matrixWH
O

Wh0
O

Wh1
O

Wh2
O

Wh11
O

�

Head

Heat Map of Logit Difference

�
London

Warsaw

Unembed Matrix

�

�

La
ye

r

vLondon

vWarsaw

Figure 4: The head attribution method showing the logit difference calculation for layer 11, head 11 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

tion that was provided in context or not, we focus287

on analyzing the roles of specific attention heads.288

Prior work has demonstrated the importance of at-289

tention heads for performing copying tasks (Wang290

et al., 2022; Elhage et al., 2021) as well as recall291

from memory (Geva et al., 2023), which motivates292

our analysis of attention heads. We perform this293

analysis on only the largest models Pythia-1.4b,294

Pythia-2.8b, as well as GPT2-xl (see Appendix D).295

6.1 Head Attribution296

The idea behind logit attribution techniques (Nos-297

talgebraist, 2020; Wang et al., 2022; Nanda, 2022)298

is to interpret activations or weights in a language299

model in terms of the vocabulary space. These300

methods work by using the unembedding matrix301

(i.e., language modeling head) in order to under-302

stand the role of a given component for a given303

task. This is built on the premise that that the final304

hidden state of the model is the summation of the305

outputs of all of the components before it (Elhage306

et al., 2021). That is, every layer of output can be307

traced back and decomposed as the contribution308

of each sublayer up to that point. We use head309

attribution to test whether individual heads tend to310

promote either the in-context capital or the mem-311

orized capital. Using this method, we are able to312

find a single head in each model that that primarily313

controls the use of memorized information1. 314

In Figure 4, we illustrate the method. The addi- 315

tive update made by the attention layer is composed 316

of the individual updates of each attention head 317

after it is passed through the WH
O output matrix 318

within the attention layer. We can project the ith 319

head into the space of the residual stream by multi- 320

plying with the ith (dhead, dmodel) slice of this ma- 321

trix (see Appendix C) and then multiplying with the 322

unembedding matrix to get the logit values for the 323

memorized and in-context city tokens. We subtract 324

these two scalar values to get the logit difference 325

(see Wang et al. (2022)). 326

Intuitively, this logit difference captures the ef- 327

fect the head has in promoting one word (relative 328

to another) to be output as the final prediction. This 329

provides us a practical way to calculate the the role 330

of each head, and find heads that consistently push 331

the model towards the memorized or in-context 332

answer. 333

Data: To identify specific heads, we randomly 334

sample 10 examples from each percentile in each 335

model that predict in-context answers and 10 other 336

examples the predict memorized answers. Thus, in 337

total, we obtain 100 examples on which the original 338

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.

5

Path Patching to Locate Important Attention Heads (Wang et al.)

Divide into 16
components

rh0 rh1 rh2 rh11

16 Attention Heads

 matrixWH
O

Wh0
O

Wh1
O

Wh2
O

Wh11
O

�

Head

Heat Map of Logit Difference

�
London

Warsaw

Unembed Matrix

�

�

La
ye

r

vLondon

vWarsaw

Figure 4: The head attribution method showing the logit difference calculation for layer 11, head 11 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

tion that was provided in context or not, we focus287

on analyzing the roles of specific attention heads.288

Prior work has demonstrated the importance of at-289

tention heads for performing copying tasks (Wang290

et al., 2022; Elhage et al., 2021) as well as recall291

from memory (Geva et al., 2023), which motivates292

our analysis of attention heads. We perform this293

analysis on only the largest models Pythia-1.4b,294

Pythia-2.8b, as well as GPT2-xl (see Appendix D).295

6.1 Head Attribution296

The idea behind logit attribution techniques (Nos-297

talgebraist, 2020; Wang et al., 2022; Nanda, 2022)298

is to interpret activations or weights in a language299

model in terms of the vocabulary space. These300

methods work by using the unembedding matrix301

(i.e., language modeling head) in order to under-302

stand the role of a given component for a given303

task. This is built on the premise that that the final304

hidden state of the model is the summation of the305

outputs of all of the components before it (Elhage306

et al., 2021). That is, every layer of output can be307

traced back and decomposed as the contribution308

of each sublayer up to that point. We use head309

attribution to test whether individual heads tend to310

promote either the in-context capital or the mem-311

orized capital. Using this method, we are able to312

find a single head in each model that that primarily313

controls the use of memorized information1. 314

In Figure 4, we illustrate the method. The addi- 315

tive update made by the attention layer is composed 316

of the individual updates of each attention head 317

after it is passed through the WH
O output matrix 318

within the attention layer. We can project the ith 319

head into the space of the residual stream by multi- 320

plying with the ith (dhead, dmodel) slice of this ma- 321

trix (see Appendix C) and then multiplying with the 322

unembedding matrix to get the logit values for the 323

memorized and in-context city tokens. We subtract 324

these two scalar values to get the logit difference 325

(see Wang et al. (2022)). 326

Intuitively, this logit difference captures the ef- 327

fect the head has in promoting one word (relative 328

to another) to be output as the final prediction. This 329

provides us a practical way to calculate the the role 330

of each head, and find heads that consistently push 331

the model towards the memorized or in-context 332

answer. 333

Data: To identify specific heads, we randomly 334

sample 10 examples from each percentile in each 335

model that predict in-context answers and 10 other 336

examples the predict memorized answers. Thus, in 337

total, we obtain 100 examples on which the original 338

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.

5

Abstract Functions in LLMs

Divide into 16
components

rh0 rh1 rh2 rh11

16 Attention Heads

 matrixWH
O

Wh0
O

Wh1
O

Wh2
O

Wh11
O

�

Head

Heat Map of Logit Difference

�
London

Warsaw

Unembed Matrix

�

�

La
ye

r

vLondon

vWarsaw

Figure 4: The head attribution method showing the logit difference calculation for layer 11, head 11 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

tion that was provided in context or not, we focus287

on analyzing the roles of specific attention heads.288

Prior work has demonstrated the importance of at-289

tention heads for performing copying tasks (Wang290

et al., 2022; Elhage et al., 2021) as well as recall291

from memory (Geva et al., 2023), which motivates292

our analysis of attention heads. We perform this293

analysis on only the largest models Pythia-1.4b,294

Pythia-2.8b, as well as GPT2-xl (see Appendix D).295

6.1 Head Attribution296

The idea behind logit attribution techniques (Nos-297

talgebraist, 2020; Wang et al., 2022; Nanda, 2022)298

is to interpret activations or weights in a language299

model in terms of the vocabulary space. These300

methods work by using the unembedding matrix301

(i.e., language modeling head) in order to under-302

stand the role of a given component for a given303

task. This is built on the premise that that the final304

hidden state of the model is the summation of the305

outputs of all of the components before it (Elhage306

et al., 2021). That is, every layer of output can be307

traced back and decomposed as the contribution308

of each sublayer up to that point. We use head309

attribution to test whether individual heads tend to310

promote either the in-context capital or the mem-311

orized capital. Using this method, we are able to312

find a single head in each model that that primarily313

controls the use of memorized information1. 314

In Figure 4, we illustrate the method. The addi- 315

tive update made by the attention layer is composed 316

of the individual updates of each attention head 317

after it is passed through the WH
O output matrix 318

within the attention layer. We can project the ith 319

head into the space of the residual stream by multi- 320

plying with the ith (dhead, dmodel) slice of this ma- 321

trix (see Appendix C) and then multiplying with the 322

unembedding matrix to get the logit values for the 323

memorized and in-context city tokens. We subtract 324

these two scalar values to get the logit difference 325

(see Wang et al. (2022)). 326

Intuitively, this logit difference captures the ef- 327

fect the head has in promoting one word (relative 328

to another) to be output as the final prediction. This 329

provides us a practical way to calculate the the role 330

of each head, and find heads that consistently push 331

the model towards the memorized or in-context 332

answer. 333

Data: To identify specific heads, we randomly 334

sample 10 examples from each percentile in each 335

model that predict in-context answers and 10 other 336

examples the predict memorized answers. Thus, in 337

total, we obtain 100 examples on which the original 338

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.

5

Path Patching to Locate Important Attention Heads (Wang et al.)

Divide into 16
components

rh0 rh1 rh2 rh11

16 Attention Heads

 matrixWH
O

Wh0
O

Wh1
O

Wh2
O

Wh11
O

�

Head

Heat Map of Logit Difference

�
London

Warsaw

Unembed Matrix

�

�

La
ye

r

vLondon

vWarsaw

Figure 4: The head attribution method showing the logit difference calculation for layer 11, head 11 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

tion that was provided in context or not, we focus287

on analyzing the roles of specific attention heads.288

Prior work has demonstrated the importance of at-289

tention heads for performing copying tasks (Wang290

et al., 2022; Elhage et al., 2021) as well as recall291

from memory (Geva et al., 2023), which motivates292

our analysis of attention heads. We perform this293

analysis on only the largest models Pythia-1.4b,294

Pythia-2.8b, as well as GPT2-xl (see Appendix D).295

6.1 Head Attribution296

The idea behind logit attribution techniques (Nos-297

talgebraist, 2020; Wang et al., 2022; Nanda, 2022)298

is to interpret activations or weights in a language299

model in terms of the vocabulary space. These300

methods work by using the unembedding matrix301

(i.e., language modeling head) in order to under-302

stand the role of a given component for a given303

task. This is built on the premise that that the final304

hidden state of the model is the summation of the305

outputs of all of the components before it (Elhage306

et al., 2021). That is, every layer of output can be307

traced back and decomposed as the contribution308

of each sublayer up to that point. We use head309

attribution to test whether individual heads tend to310

promote either the in-context capital or the mem-311

orized capital. Using this method, we are able to312

find a single head in each model that that primarily313

controls the use of memorized information1. 314

In Figure 4, we illustrate the method. The addi- 315

tive update made by the attention layer is composed 316

of the individual updates of each attention head 317

after it is passed through the WH
O output matrix 318

within the attention layer. We can project the ith 319

head into the space of the residual stream by multi- 320

plying with the ith (dhead, dmodel) slice of this ma- 321

trix (see Appendix C) and then multiplying with the 322

unembedding matrix to get the logit values for the 323

memorized and in-context city tokens. We subtract 324

these two scalar values to get the logit difference 325

(see Wang et al. (2022)). 326

Intuitively, this logit difference captures the ef- 327

fect the head has in promoting one word (relative 328

to another) to be output as the final prediction. This 329

provides us a practical way to calculate the the role 330

of each head, and find heads that consistently push 331

the model towards the memorized or in-context 332

answer. 333

Data: To identify specific heads, we randomly 334

sample 10 examples from each percentile in each 335

model that predict in-context answers and 10 other 336

examples the predict memorized answers. Thus, in 337

total, we obtain 100 examples on which the original 338

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.

5

Abstract Functions in LLMs

Abstract Functions in LLMs
Specific heads mediate which mechanism is used

Figure 5: With the chosen memory head (11.11) and in-context Head (19.14), we apply a multiplicative factor (↵) to
measure the effect on producing either memorized or in-context answers. This was performed on two 100 example
tuning sets (§6.1). The first graph demonstrates the most successful case of intervention. By tuning the memory
head (11.11) value by ↵ = �0.7, can flip 86% of the examples from originally predicting memorized answers to
predicting in-context answers. The dotted line shows no intervention (↵ = 1). The gray dot shows the value of ↵
that produces the best results according to our criteria.

model predicts in-context cities and 100 examples339

on which it predicts memorized cities. We run340

these 200 examples through the model in batches341

of 5 and use head attribution to extract the logit342

difference between each head in every layer. We343

observe that there is a variation in the roles of every344

head through out the batches, but we identify a345

series of heads that consistently push the model346

towards one answer or the other.347

6.2 Effect of Tuning Individual Attention348

Heads349

Using head attribution, we identify two different350

types of heads: memory heads and in-context351

heads. The memory heads promote the predic-352

tion towards the memorized answer and the in-353

context heads promote the predictions towards the354

in-context answer. These heads are shown on the355

righthand side of Figure 4, which plots the relative356

effect of each head at each layer for promoting the357

in-context vs. memorized answers.358

Since these heads heavily contribute to the logit359

increase one of the two answers, we hypothesize360

that multiplying the value vectors by a scalar will361

enable us to increase or decrease the effect of each362

head. Let this multiplicative value be ↵. We hy-363

pothesize that tuning up the memory head will364

increase the number of answers that contain the365

ground truth answer, while tuning it down will366

increase the number that contain the in-context an-367

swer. The opposite should hold for the in-context368

head.369

With this assumption, we apply the scaling in-370

tervention on the series of potential memory heads 371

and in-context heads on the 200 sampled examples. 372

From the series of potential heads, we pick the 373

head that has the strongest effect in the intended 374

direction. For example, for the in-context head, this 375

effect is measured by the proportion of times the 376

head changes the original memorized answers into 377

in-context answers at it’s optimal ↵. The analogous 378

process is used to find and tune the memory head. 379

Therefore, we identify one memory head and one 380

in-context head (see Figure 5, Appendix C.3, each 381

with their optimal ↵, as determined via tuning on 382

the development set. 383

Figure 5 shows the effect of the ↵ parameter 384

on the proportion of in-context vs. memorized an- 385

swers for both the memory and in-context heads on 386

Pythia-1.4b. Tuning the memory down has a strong 387

effect on the generated text, flipping more than 388

80% of the predictions to to the given in-context 389

answers, and removing all mentions of the memo- 390

rized answer. The other interventions show positive 391

but weaker results. In general, the in-context is less 392

effective at flipping predictions, and promoting the 393

memory answer is more difficult than promoting 394

the in-context answer. 395

6.3 Results of Interventions on the World 396

Capital Dataset 397

Figure 6 shows the intervention results on the full 398

world capital dataset with selected memory and 399

in-context head and their respective ↵. The result 400

aligns with our expectations. Negatively tuning 401

the memory head drastically increase proportion of 402

6

Specific heads mediate which mechanism is used

Figure 5: With the chosen memory head (11.11) and in-context Head (19.14), we apply a multiplicative factor (↵) to
measure the effect on producing either memorized or in-context answers. This was performed on two 100 example
tuning sets (§6.1). The first graph demonstrates the most successful case of intervention. By tuning the memory
head (11.11) value by ↵ = �0.7, can flip 86% of the examples from originally predicting memorized answers to
predicting in-context answers. The dotted line shows no intervention (↵ = 1). The gray dot shows the value of ↵
that produces the best results according to our criteria.

model predicts in-context cities and 100 examples339

on which it predicts memorized cities. We run340

these 200 examples through the model in batches341

of 5 and use head attribution to extract the logit342

difference between each head in every layer. We343

observe that there is a variation in the roles of every344

head through out the batches, but we identify a345

series of heads that consistently push the model346

towards one answer or the other.347

6.2 Effect of Tuning Individual Attention348

Heads349

Using head attribution, we identify two different350

types of heads: memory heads and in-context351

heads. The memory heads promote the predic-352

tion towards the memorized answer and the in-353

context heads promote the predictions towards the354

in-context answer. These heads are shown on the355

righthand side of Figure 4, which plots the relative356

effect of each head at each layer for promoting the357

in-context vs. memorized answers.358

Since these heads heavily contribute to the logit359

increase one of the two answers, we hypothesize360

that multiplying the value vectors by a scalar will361

enable us to increase or decrease the effect of each362

head. Let this multiplicative value be ↵. We hy-363

pothesize that tuning up the memory head will364

increase the number of answers that contain the365

ground truth answer, while tuning it down will366

increase the number that contain the in-context an-367

swer. The opposite should hold for the in-context368

head.369

With this assumption, we apply the scaling in-370

tervention on the series of potential memory heads 371

and in-context heads on the 200 sampled examples. 372

From the series of potential heads, we pick the 373

head that has the strongest effect in the intended 374

direction. For example, for the in-context head, this 375

effect is measured by the proportion of times the 376

head changes the original memorized answers into 377

in-context answers at it’s optimal ↵. The analogous 378

process is used to find and tune the memory head. 379

Therefore, we identify one memory head and one 380

in-context head (see Figure 5, Appendix C.3, each 381

with their optimal ↵, as determined via tuning on 382

the development set. 383

Figure 5 shows the effect of the ↵ parameter 384

on the proportion of in-context vs. memorized an- 385

swers for both the memory and in-context heads on 386

Pythia-1.4b. Tuning the memory down has a strong 387

effect on the generated text, flipping more than 388

80% of the predictions to to the given in-context 389

answers, and removing all mentions of the memo- 390

rized answer. The other interventions show positive 391

but weaker results. In general, the in-context is less 392

effective at flipping predictions, and promoting the 393

memory answer is more difficult than promoting 394

the in-context answer. 395

6.3 Results of Interventions on the World 396

Capital Dataset 397

Figure 6 shows the intervention results on the full 398

world capital dataset with selected memory and 399

in-context head and their respective ↵. The result 400

aligns with our expectations. Negatively tuning 401

the memory head drastically increase proportion of 402

6

Abstract Functions in LLMs

Specific heads mediate which mechanism is used

Figure 5: With the chosen memory head (11.11) and in-context Head (19.14), we apply a multiplicative factor (↵) to
measure the effect on producing either memorized or in-context answers. This was performed on two 100 example
tuning sets (§6.1). The first graph demonstrates the most successful case of intervention. By tuning the memory
head (11.11) value by ↵ = �0.7, can flip 86% of the examples from originally predicting memorized answers to
predicting in-context answers. The dotted line shows no intervention (↵ = 1). The gray dot shows the value of ↵
that produces the best results according to our criteria.

model predicts in-context cities and 100 examples339

on which it predicts memorized cities. We run340

these 200 examples through the model in batches341

of 5 and use head attribution to extract the logit342

difference between each head in every layer. We343

observe that there is a variation in the roles of every344

head through out the batches, but we identify a345

series of heads that consistently push the model346

towards one answer or the other.347

6.2 Effect of Tuning Individual Attention348

Heads349

Using head attribution, we identify two different350

types of heads: memory heads and in-context351

heads. The memory heads promote the predic-352

tion towards the memorized answer and the in-353

context heads promote the predictions towards the354

in-context answer. These heads are shown on the355

righthand side of Figure 4, which plots the relative356

effect of each head at each layer for promoting the357

in-context vs. memorized answers.358

Since these heads heavily contribute to the logit359

increase one of the two answers, we hypothesize360

that multiplying the value vectors by a scalar will361

enable us to increase or decrease the effect of each362

head. Let this multiplicative value be ↵. We hy-363

pothesize that tuning up the memory head will364

increase the number of answers that contain the365

ground truth answer, while tuning it down will366

increase the number that contain the in-context an-367

swer. The opposite should hold for the in-context368

head.369

With this assumption, we apply the scaling in-370

tervention on the series of potential memory heads 371

and in-context heads on the 200 sampled examples. 372

From the series of potential heads, we pick the 373

head that has the strongest effect in the intended 374

direction. For example, for the in-context head, this 375

effect is measured by the proportion of times the 376

head changes the original memorized answers into 377

in-context answers at it’s optimal ↵. The analogous 378

process is used to find and tune the memory head. 379

Therefore, we identify one memory head and one 380

in-context head (see Figure 5, Appendix C.3, each 381

with their optimal ↵, as determined via tuning on 382

the development set. 383

Figure 5 shows the effect of the ↵ parameter 384

on the proportion of in-context vs. memorized an- 385

swers for both the memory and in-context heads on 386

Pythia-1.4b. Tuning the memory down has a strong 387

effect on the generated text, flipping more than 388

80% of the predictions to to the given in-context 389

answers, and removing all mentions of the memo- 390

rized answer. The other interventions show positive 391

but weaker results. In general, the in-context is less 392

effective at flipping predictions, and promoting the 393

memory answer is more difficult than promoting 394

the in-context answer. 395

6.3 Results of Interventions on the World 396

Capital Dataset 397

Figure 6 shows the intervention results on the full 398

world capital dataset with selected memory and 399

in-context head and their respective ↵. The result 400

aligns with our expectations. Negatively tuning 401

the memory head drastically increase proportion of 402

6

Abstract Functions in LLMs

• We focus on a simple but important step of language processing: retrieving
factual information from memory

• We find that Transformer LLMs appear to implement this step using a simple
linear update mechanism computer in the FFNs

• The computation is modular and generic. It can be transferred to new contexts in
a zero-shot manner.

• It’s use is modulated by independent, local, and (somewhat) controllable
mechanisms

• Serves as a proof of concept for how “black box” LLM behaviors can be
translated into interpretable, functional terms

Abstract Functions in LLMs
Summary and Discussion

This Talk

• Transformers and the “Mental Model of LLMs”

• Two Proofs of Concept:

• Abstract representation of relations

• Modular and reusable algorithmic “building blocks”

Understanding LLM Circuits and Algorithms

Jack Merullo

Carsten Eickhoff

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter.
What color is the pencil?
A: _____

Ippolito and Callison-Burch (2023)

Then, Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____

Wang et al. (2022)

Understanding LLM Circuits and Algorithms
Two Different Language Processing Tasks

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____.

Understanding LLM Circuits and Algorithms
Prior Work: The IOI Circuit

Name Mover Head

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____.

Negative Name Mover Head

Subject Inhibition HeadDuplicate Token/Induction
Heads Heads

Understanding LLM Circuits and Algorithms
Prior Work: The IOI Circuit

Name Mover Head

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____.

1. Identify any duplicated names.
2. Alert the S-Inhibition head of their location
3. Block attention to these duplicates
4. Attend to remaining names and copy

Negative Name Mover Head

Subject Inhibition HeadDuplicate Token/Induction
Heads Heads

Understanding LLM Circuits and Algorithms
Prior Work: The IOI Circuit

Name Mover Head

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____.

1. Identify any duplicated names.
2. Alert the S-Inhibition head of their location
3. Block attention to these duplicates
4. Attend to remaining names and copy

Negative Name Mover Head

Subject Inhibition HeadDuplicate Token/Induction
Heads Heads

Understanding LLM Circuits and Algorithms
Prior Work: The IOI Circuit

Name Mover Head

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____.

1. Identify any duplicated names.
2. Alert the S-Inhibition head of their location
3. Block attention to these duplicates
4. Attend to remaining names and copy

Negative Name Mover Head

Subject Inhibition HeadDuplicate Token/Induction
Heads Heads

⛔
⛔

Understanding LLM Circuits and Algorithms
Prior Work: The IOI Circuit

Name Mover Head

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____.

1. Identify any duplicated names.
2. Alert the S-Inhibition head of their location
3. Block attention to these duplicates
4. Attend to remaining names and copy

Negative Name Mover Head

Subject Inhibition HeadDuplicate Token/Induction
Heads Heads

⛔
⛔

Understanding LLM Circuits and Algorithms
Prior Work: The IOI Circuit

Name Mover Head

Matthew and Robert had a lot of fun at the school.
Robert gave a ring to Matthew.

1. Identify any duplicated names.
2. Alert the S-Inhibition head of their location
3. Block attention to these duplicates
4. Attend to remaining names and copy

Negative Name Mover Head

Subject Inhibition HeadDuplicate Token/Induction
Heads Heads

Understanding LLM Circuits and Algorithms
Prior Work: The IOI Circuit

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Understanding LLM Circuits and Algorithms
Generalization to the Colored Objects Circuit

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Understanding LLM Circuits and Algorithms

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Generalization to the Colored Objects Circuit

Understanding LLM Circuits and Algorithms

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Generalization to the Colored Objects Circuit

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

1. Identify any duplicated words.
2. Alert the Content Gatherer heads of their location
3. Promote attention to these duplicates
4. Attend to (color of) duplicate and copy

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

1. Identify any duplicated words.
2. Alert the Content Gatherer heads of their location
3. Promote attention to these duplicates
4. Attend to (color of) duplicate and copy

Understanding LLM Circuits and Algorithms

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Generalization to the Colored Objects Circuit

Understanding LLM Circuits and Algorithms

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Generalization to the Colored Objects Circuit

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

1. Identify any duplicated words.
2. Alert the Content Gatherer heads of their location
3. Promote attention to these duplicates
4. Attend to (color of) duplicate and copy

🙋

Understanding LLM Circuits and Algorithms

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Generalization to the Colored Objects Circuit

🙋

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

1. Identify any duplicated words.
2. Alert the Content Gatherer heads of their location
3. Promote attention to these duplicates
4. Attend to (color of) duplicate and copy

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

1. Identify any duplicated words.
2. Alert the Content Gatherer heads of their location
3. Promote attention to these duplicates
4. Attend to (color of) duplicate and copy

Understanding LLM Circuits and Algorithms

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: Blue

Generalization to the Colored Objects Circuit

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter.
What color is the pencil?
A: _____

Then, Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____

Understanding LLM Circuits and Algorithms
Circuit Similarities and Differences

Understanding LLM Circuits and Algorithms

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter.
What color is the pencil?
A: _____

Then, Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____

Circuit Similarities and Differences

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

0

25

50

75

100

GPT2 Large Accuracy

IOI
Colored Objs.

Understanding LLM Circuits and Algorithms

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter.
What color is the pencil?
A: _____

Then, Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____

Circuit Similarities and Differences

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

0

25

50

75

100

GPT2 Large Accuracy

IOI
Colored Objs.

Often, randomly
guessing among

the three
candidate
colors.

Understanding LLM Circuits and Algorithms

Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter.
What color is the pencil?
A: _____

Then, Matthew and Robert had a lot of fun at the school.
Robert gave a ring to _____

Circuit Similarities and Differences

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

0

25

50

75

100

GPT2 Large Accuracy

IOI
Colored Objs.

What happened to
the inhibition?

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Understanding LLM Circuits and Algorithms

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Generalization to the Colored Objects Circuit

🙋

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Active, but incorrect biases
and weak signal

Understanding LLM Circuits and Algorithms
Generalization to the Colored Objects Circuit

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Functioning as expected,
but “benched”

Understanding LLM Circuits and Algorithms
Generalization to the Colored Objects Circuit

Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Intervene to force the desired attention
pattern (based on IOI) for just these 4 heads.

Understanding LLM Circuits and Algorithms
Generalization to the Colored Objects Circuit

Understanding LLM Circuits and Algorithms
Generalization to the Colored Objects Circuit
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Intervene to force the desired attention
pattern (based on IOI) for just these 4 heads.

Understanding LLM Circuits and Algorithms
Generalization to the Colored Objects Circuit
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Intervene to force the desired attention
pattern (based on IOI) for just these 4 heads.

0

25

50

75

100

GPT2 Large Accuracy

IOI
Colored Objs.

Understanding LLM Circuits and Algorithms
Generalization to the Colored Objects Circuit
Q: On the table, I see an orange textbook, a red puzzle, and a purple cup. What
color is the textbook?
A: Orange
Q: One the table, there is a blue pencil, a black necklace, and a yellow lighter. What
color is the pencil?
A: _____

Name Mover Head
copies what it attends to

Neg. Name Mover Head
demotes of what it attends to

Subject Inhibition Head
blocks attn to duplicates

Duplicate Token Heads
identifies duplicates

Content Gatherer Heads
routes attns to relevant toks

Intervene to force the desired attention
pattern (based on IOI) for just these 4 heads.

0

25

50

75

100

GPT2 Large Accuracy

IOI
Colored Objs.
CO after Inter.

• There is evidence that individual circuit components can be modular and generic, and reused
across tasks

• This reuse gives us insight into the algorithmic “building blocks” of Transformers, which might
not match our intuitions (e.g., from linguistics) about how tasks decompose into subtasks,
and which can explain otherwise arbitrary-seeming behaviors like sensitivity to prompts

• Mending a “broken” circuit can have substantial effects on performance

• Follow up work in progress:

• Why doesn’t the LLM learn to the correct circuit itself (hypothesis: undertrained/effect of
scale/grokking)

• Similarities to human neural mechanisms — (emergent) capacity limits, chunking, primacy/
recency biases, content effects, curriculum effects….

Understanding LLM Circuits and Algorithms
Summary and Discussion

• LLMs are often assumed to be black boxes. They aren’t.

• Interpretting LLMs in higher-level functional terms can offer insight into the “neurocircuitry”
and “cognition” of LLMs…

• …which might substantially transform future work in theory, engineering, safety, and even the
science of human language and cognition

• But its a long game! So much still unknown:

• Methods are new and primitive. We cannot take results for granted.

• We don’t know what we are looking for, or have good metrics of success.

• Moving targets. Models keep changing, and interpretability results don’t always generalize

• But problems that are long-term and challenging are good things for scientists! Lots of
reasons to be excited and optimistic :)

Discussion

Thank you!

Jack Merullo

Qinan Yu Carsten Eickhoff

