Robustness Verification: Neural Network's Surrogate

 Melanie Ducoffe ANITI DAYS November 2024

Robustness during ML development (ARP6983)

System Development System Integration & **SYSTEM Safety Assessement** Verification (Airborne: ARP4754B/ED-79B, ARP4761A/ED-135A System and Safety System and Safety ATM/ANS in Europe: AMC EU 2017/373. ED-153 Awareness on specific AI/ML considerations: ED-324/ARP6983) Considerations (§4) Considerations (§4) **ML CONSTITUENT** ML Model & Data Proc. Integrated & Verified MLC Requirements* (§6.2) (ED-324/ARP6983) Description(s) (§6.2&6.4) **ML** Constituent **ML** Verification ML Data Management (§6.3) MLC (Physical) $(§6.6)$ MLC Integration **Architecture Design** and Verification (§7.3) ML Req $(§7.1)$ ML Model Design (56.4) Validation (§6.5) ML Model & Data Proc. **ML CONSTITUENT** $(§6.286.4)$ (ED-324/ARP6983) ML-based SW/HW Item Development & Verification Legend Implementation considerations (§7.2) **Existing Process** ED-324/ARP6983 Process Artefact HW/SW Item(s) DEVELOPMENT LEVEL (Guidance) ITEM (ED-12C/DO-178C, ED-80/DO-254, ED-109A/DO-278A and supp. Absence of Unintended Awareness on specific AI/ML considerations: ED-324/ARP6983)

Functionality *ForMuLA: Formal Methods Use for Learning*

Assurance - EASA & Collins Aerospace partnership 2

Property Requirement for Surrogate Models

UNSAFE SURROGATE $-NN$ **SAFE SURROGATE** \approx \mathcal{P} , and \mathcal{P} $\min_{x\in\Omega}f(x)-f(x_0)\geq 0$ $\boxed{\max\limits_{x\in\Omega}\mid f(x)-f(x_0)\vert}$ Partial Input Monotony $f(x_1)$ $f(x_2)$ x_1 X_2 $\begin{pmatrix} speed \\ weight \\ dry \text{ runway} \end{pmatrix} = \begin{pmatrix} speed \\ weight \\ wet \text{ runway} \end{pmatrix} \implies BDE_1 < BDE_2$ 3

Shows model vulnerabilities but not their absence >> Do not provide property verification guarantee.

Naïve attacks schemes can be used for regression (FGSM, PGD)

Casting Local Verification as a Classification Property

 y s_o =min(y-y_{min}, y_{max}-y) s 1 $S₂$ $=y_{\text{min}} - y$ $=y-y_{max}$

 $max_{z \in \Omega} g(Z;X) \leq 0$

 $argmax_{z \in \Omega} s(Z;X)=0$

Verification as an Exact Optimization problem

$max_{z \in \Omega} g(Z;X) > 0$

- + convergence to the true optimum that implies robustness or non robustness.
- + Not scalable to larger network SMT-solver [Marabou] Lipschitz optimization **(Paul Novello) Mixed Integer Programming (VENUS)**

Verification as an Exact Optimization problem: MILP

Verification as a Relaxed Optimization Problem

10

Verification as a Relaxed Optimization problem: LIRPA

Verification and automatic differentiation

Primal View Legend **Linear Outer Bounds** Weaker / more relaxed Neurify **Abstract Transformers** (Wang et al., 2018) Similar strength **DeepZ** (Singh et al., 2018) Fast-Lin (Weng & Zhang et Dual View al., 2018) **LP-Relaxed Dual DeepPoly ɑ-CROWN** (Wong & Kolter, 2018) (Singh et al., 2019). **CROWN** (Zhang & Weng et Section al., 2018) Theorem Secti **Optimal Convex Relaxation** Corollary 4.3 Lagrangian Dual **ꞵ-CROWN** "Problem (C)" With Eq. (6) & (7) (Dvijotham et al., 2018) $p_{\mathcal{C}}^* = d_{\mathcal{O}}^*$ Qin et al., 2019) **Convex Relaxation** $p_{O}^{\star} \geq d_{O}^{\ast}$ $p_{\mathcal{C}}^*$ Gap **Barrier** ΔI $p_{\mathcal{O}}$. p_{O}^* **Neural Network Verification** "Problem (O)"

A Convex Relaxation Barrier to Tigh Robustness Verification of NNs, Salman et al.

- Model- **Research prototypes**:
	- Two hidden layers (165 neurons)
	- ReLu activation functions
	- Dense output layer (81)
- Test data: 1000 loads/stress points

Verification approach - Combinaison

~45% of test data are shown to be non locally stable

The "Adversarial attacks" step was able to find all non-stabilities

Low number of remaining test data to be evaluated by "C" after (A or A+B)

Significant decrease in computational time

Open source library: Airobas ¹⁵

Complete Verification Pipeline for Stability

Current models have **deceiving stability accuracy: ~40%**. What tools are at our disposal ?

- XAI actionability: Reducing the problem complexity (input and output dimensions)
- **2) Regularizing the training to balance between good regression performance and good stability accuracy**

AIRBUS

Robust \Box Accurate \Box Stable

Data Augmentation

Artificially increase the size of the dataset by applying domain-specific transformations on the input and output data. It introduces stability invariance.

Enhance stability during design/training via targeted data augmentation

AIRRUS

Data Augmentation: augmented groundtruth (Y, X', ϴ-> Y')

Groundtruth

use the groundtruth label of the initial input

Stability clipping

clip the prediction of the adversarial input to lie within the stability bounds (Ymin, Ymax)

Results & Analysis : Robustness of each output

- Most of the outputs are **naturally Robust**
- About **40%** of outputs are **problematic**

➔ Can we **target** those outputs ?

Certified Training (Meta Networks)

Certified training use Incomplete Formal Methods as a Meta Model to provide formal guarantees about a model's robustness against domain-specific perturbations.

Training Pipeline : Stability with Certified training

Results & Analysis : Certified Training on single-output models

Promising results ! 5-10% drop in the fooling rates compared to the previous models

Surrogate Neural Networks Local Stability for Aircraft Predictive Maintenance, FMICS 2024

Thomas Deltort Ryma Boumazouza Guillaume Poveda Marion Cécile Martin Audrey Galametz

ANITI EVENT: Hands on Verification 6th March 2025

https://github.com/airbus/Airobas https://github.com/airbus/decomon