


Robustness during ML development (ARP6983)
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Property Requirement for Surrogate Models
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Introducing Verification (on Local Stability)
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Introducing Verification (on Local Stability)
: AIRBUS —
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Counter-example with Adversarial Attack
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Shows model vulnerabilities but not their absence Naive attacks schemes can be
>> Do not provide property verification guarantee. used for regression (FGSM, PGCD)
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Casting Local Verification as a Classification Property
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Verification as an Exact Optimization problem
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I white box setting
(

convergence to the true optimum that implies
robustness or non robustness.

Not scalable to larger network

SMT-solver [Maraboul]

Lipschitz optimization (Paul Novello)

Mixed Integer Programming (VENUS)

No magical trick:




Verification as an Exact Optimization problem: MILP
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Verification as a Relaxed Optimization Problem
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Verification as a Relaxed Optimization problem: LIRPA
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VERIFICATION "FORWARD-FEED’ VERIFICATION "BACKWARD-FEED”

= B
+ Self-sufficient + Not self-sufficient (pre-processing)
+ Complexity = cost of inference +  Complexity = cost of
backpropagation at best (gradient)
- Less accurate - More accurate

: _ - Not scalable on large images - Not scalable on large outputs
github.com/airbus/decomon (GAN) 11



Verification and automatic differentiation
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A Convex Relaxation Barrier to Tigh Robustness

Verification of NNs, Salman et al. 12



Towards Customized Aircraft Maintenance
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Aircraft Loads-to-Stress Prediction

Ny Predicted e Model- Research
Stress
prototypes:

o Two hidden layers
(165 neurons)
o Relu activation

216 inputs . 81 outputs

::% T Knot functions

§° o Dense output layer
[ (81)

) e Testdata: 1000

—‘T :o T .
loads/stress points

(Normalised) model prediction f(x)
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Verification approach - Combinaison
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A: PGD (Cleverhans)
B: CROWN (Decomon)
C: MILP (Gurobi)
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Results

1 1@ |3) |4 (5) (6)
A B C A+C B+C Pipeline A+B+C
#Tested 1000 |1000 [1000 {1000/558|1000/446|1000/558/4
#True - 554 |558 |558 558 -/554/4 = 558
#False 442 |- 442 442 442 442/-/0 = 442
Runtime |10.7 |3.3 (267 |(19.8 267 10.7/1.96/3.91 = 16.6

-45% of test data are shown to be non locally stable
The “Adversarial attacks” step was able to find all non-stabilities

Low number of remaining test data to be evaluated by “C” after (A or A+B)

Significant decrease in computational time
Open source library: Airobas @ -




Complete Verification Pipeline for Stability
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Stability accuracy can be efficiently measured with a verification pipeline

\ Inputs :
FDT neural network
+

Local robustness
property to be

> verified

Design Adversarial
attacks

Tool: cleverhans

IR

hans

Perform ‘inexact’
verification (i.e.,
LiRPA-based)
Tool: decomon

\ o) /
Yo

Neuron value bounds

Verified Inconclusive
property?

Local
robustness

|

‘Exact’ verification
Tool: MILP
(or other exact solver)

vvvvvvvvv

property
verified

MILP finds a counterexample

Current models have deceiving stability accuracy: ~-40%. What tools are at our disposal ?

1) XAl actionability: Reducing the problem complexity (input and output dimensions)

2) Regularizing the training to balance between good regression performance and good

stability accuracy
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Stability training

AIRBUS —

[Robust = Accurate  gp Stable }

Weights Constraints Certified Training
(Meta Networks)

Weights constraints limit the Certified training use Incomplete
Lipschitz constant in a neural Formal Methods as a Meta Model
network.It is known to increase to provide formal guarantees

the model’s resilience against about a model’s robustness
adversarial attacks or input against domain-specific
perturbations by limiting the perturbations.

model’s capacity to fit noise

17




Stability training
AIRBUS —
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Enhance stability during design/training via targeted data augmentation
AIRRIIS
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Data Augmentation: augmented groundtruth (Y, X, ©-> Y’)
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Groundtruth
use the groundtruth label of
the initial input

Stability clipping

clip the prediction of the
adversarial input to lie within
the stability bounds
(Ymin, Ymax)
20



Results & Analysis : Impact of DA on Robustness
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Results & Analysis : Robustness of each output
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e Most of the outputs are naturally Robust

Fooling Rate =1 - Robust_accuracy

Baseline

0.2 4

Data Augmentation
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e About 40% of outputs are problematic

T
20

T T
40 60
Output Number

- Can we target those
outputs ?
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80
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Stability training
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Certified Training
(Meta Networks)

Certified training use Incomplete
Formal Methods as a Meta Model
to provide formal guarantees
about a model’s robustness
against domain-specific

perturbations.
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Training Pipeline : Stability with Certified training
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Results & Analysis : Certified Training on single-output models
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Comparison of Fooling Rates between baseline and single output adversarial training [ ] CT fOI‘ Si ng |e-0utput mOdels
for the 5 problematic outputs
mm Certified training
[J|mm Baseline trainings
B ] Data Augmentation
0.1 Scores with AA one target \
Scores baseline on whole model
mmm Scores baseline one target
mmm Certified Training one-target .
oo mmm Scores with AA on whole model SI ng |e—output

16 16 16 16 16 29 29 29 29 29 32 32 32 32 32 53 53 53 53 53
Output Number

multi-output

Promising results ! 5-10% drop in the fooling rates
compared to the previous models
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Surrogate Neural Networks Local Stability for Aircraft Predictive Maintenance, FMICS 2024

Thomas Deltort ~ Ryma Boumazouza Cuillaume Poveda Marion Cécile Martin ~ Audrey Galametz

ANITI EVENT: Hands on Verification

6th March 2025
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https://github.com/airbus/Airobas https://github.com/airbus/decomon



