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Robustness during ML development (ARP6983)

Absence of Unintended 
Functionality ForMuLA: Formal Methods Use for Learning 

Assurance - EASA & Collins Aerospace partnership 2



Property Requirement for Surrogate Models

??

Partial Input Monotony

3



Introducing Verification (on Local Stability)

Model : f(X)

INPUT DOMAIN Ω
  

OUTPUT DOMAIN  

The property is verified !
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maxZ ∈Ω g(Z;X)≤0

g(Z;X) = maxi  max( fi(Z) - ui(X), 
                                   li(X) - fi(Z) ) 4



Introducing Verification (on Local Stability)

Model : f(X)

INPUT DOMAIN Ω
 

OUTPUT DOMAIN  

The property is violated

x 

5%|X|AB

C
f(x)

ymax=u(x)

ymin=l(x)

f(C) f(B)

f(A)

maxZ ∈Ω g(Z;X)>0

g(Z;X) = maxi  max( fi(Z) - ui(X), 
                                   li(X) - fi(Z) ) 5



Counter-example with Adversarial Attack

maxZ ∈Ω g(Z;X)>0 ⇒ ∃ Z ∈ Ω s.t g(Z; X) 
>0

Model : f(X)
f(x)

u(x)

l(x)

f(X2)
f(Xn)x 

Xn

X1

X0

X2 f(X1)

f(X0)

Direction of gradients 
with respect to loss
(training in action)

Direction of 
gradients which 
maximizes 
the loss (attack)

Loss

Shows model vulnerabilities but not their absence 
>> Do not provide property verification guarantee.

Naïve attacks schemes can be 
used for regression (FGSM, PGD)
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Casting Local Verification as a Classification Property

 y

 =min(y-ymin,  ymax- y)s
0  

s
1  

s
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 =ymin- y

 =y-ymax

Low Runtime

FOOLING RATE (success rate)

0%

AAPGD

Carlini

FGSM DF/SDF

FGSM / PGD

Niter gradient ascent on the 
loss function in x.

(SUPER) DEEPFOOL 
(S-DF)
iterative projection on the 
closest linearized hyperplane 
boundary.

     CARLINI & WAGNER         
     (C&W)

Targeted attack based on the 
logits.
    

AUTO ATTACK (AA)

fixed combination of 3 
attacks (AutoPGD, FAB, 
Square) with different losses

High

maxZ ∈Ω g(Z;X)≤0

argmaxZ ∈Ω s(Z;X)=0
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Verification as an Exact Optimization problem

x 

AB

C

f(x)

u(x)

l(x)

f(C) f(B)

f(A)

maxZ ∈Ω g(Z;X)>0

No magical trick: 
white box setting

+ convergence to the true optimum that implies 
robustness or non robustness. 

+ Not scalable to larger network
SMT-solver [Marabou]
Lipschitz optimization (Paul Novello)
Mixed Integer Programming (VENUS)
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Verification as an Exact Optimization problem: MILP
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Verification as a Relaxed Optimization Problem

f(C)f(B)

f(A)

f(B) f(C)

f(A)

f(C)f(B)

f(A)

f(C)

outer-approximations that only implies 
robustness:

Linear Relaxation [CROWN]
Convex Relaxation [SDP]

∀z ∈Ω f(z)≤f(z)≤f(z)
Build Under/Over approximation of f

Use it for dominating g

∀z ∈Ω g(z)≤g(z)

maxZ ∈Ω g(Z;X)≤0 ⇒maxZ ∈Ω g(Z;X)≤0

f(B)
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Verification as a Relaxed Optimization problem: LIRPA

FOR
WA

RD

BAC
KW

ARD

VERIFICATION ‘FORWARD-FEED’ VERIFICATION ‘BACKWARD-FEED’

+   Self-sufficient

+ Complexity = cost of inference

- Less accurate
- Not scalable on large images

+   Not self-sufficient (pre-processing)

+ Complexity = cost of 
backpropagation at best (gradient)

- More accurate
- Not scalable on large outputs 

(GAN)github.com/airbus/decomon 11



A Convex Relaxation Barrier to Tigh Robustness 
Verification of NNs, Salman et al.

ꞵ-CROWN

    Verification and automatic differentiation

ɑ-CROWN
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Towards Customized Aircraft Maintenance

Predicted 
StressLoads

216 inputs 81 outputs

Aircraft Loads-to-Stress Prediction

● Model- Research 
prototypes:
○ Two hidden layers 

(165 neurons)
○ ReLu activation 

functions
○ Dense output layer 

(81)

● Test data: 1000 
loads/stress points 
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Verification approach - Combinaison

A+B+C

A+C

A: PGD (Cleverhans)
B: CROWN (Decomon)
C: MILP (Gurobi)
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Results

~45% of test data are shown to be non locally stable

The “Adversarial attacks” step was able to find all non-stabilities

Low number of remaining test data to be evaluated by “C” after (A or A+B)

    Significant decrease in computational time

                                                                                  Open source library: Airobas 15



Complete Verification Pipeline for Stability

Stability accuracy can be efficiently measured with a verification pipeline

Current models have deceiving stability accuracy: ~40%. What tools are at our disposal ?

1) XAI actionability: Reducing the problem complexity (input and output dimensions)
2) Regularizing the training to balance between good regression performance and good 

stability accuracy
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Stability training

Data Augmentation Weights Constraints Certified Training 
(Meta Networks)

Artificially increase the size of 
the dataset by applying 
domain-specific 
transformations on the input 
and output data. It introduces 
stability invariance.

Weights constraints limit the 
Lipschitz constant in a neural 
network.It is known to increase 
the model’s resilience against 
adversarial attacks or input 
perturbations by limiting the 
model’s capacity to fit noise

Certified training use Incomplete 
Formal Methods as a Meta Model 
to provide formal guarantees 
about a model’s robustness 
against domain-specific 
perturbations.

AccurateRobust Stable
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Stability training

Data Augmentation

Artificially increase the size of 
the dataset by applying 
domain-specific 
transformations on the input 
and output data. It introduces 
stability invariance.
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Enhance stability during design/training via targeted data augmentation

x y_predϴ(x)
 Performance loss 

loss_p (y, y_predϴ(x))

NN: ϴ

x’ y_predϴ(x’)
Stability loss

loss_s (y’, y_predϴ(x’))

Same Network
Shared Weights

Data Augmentation

(x,y)

(x’,y’)

y

y’

NN: ϴ

Combined loss
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Data Augmentation: augmented groundtruth (Y, X’, ϴ-> 
 
Y’)

Y’=Y

Ymax

Ymin Ymin

Ymax
Y’=Ymax

Y’=Ymin

Y’=Y

Groundtruth
use the groundtruth label of 

the initial input

Stability clipping
clip the prediction of the 

adversarial input to lie within 
the stability bounds 

(Ymin, Ymax)
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Results & Analysis : Impact of DA on Robustness

Stable but not accurate

Our goal

Not stable/accurate

Not stable and accurate

Baseline
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Results & Analysis : Robustness of each output 

● Most of the outputs are naturally Robust
● About 40% of outputs are problematic

Baseline Data Augmentation

➔ Can we target those 
outputs ?

Fooling Rate = 1 - Robust_accuracy
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Stability training

Certified Training 
(Meta Networks)

Certified training use Incomplete 
Formal Methods as a Meta Model 
to provide formal guarantees 
about a model’s robustness 
against domain-specific 
perturbations.
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Training Pipeline : Stability with Certified training

Performance loss (MSE…) 
loss_p(Y, Y(X, ϴ)

 
)X YY(X, ϴ)

 
NN: ϴ

Asymmetric Stability loss 
Lower than Y_max

X_min

 
X_max

Lirpa(NN,ϴ)

Decomon 
(Lirpa)

Stability Input 
Bounds

Y_min(Box,
 
 ϴ)

 

Y_max(Box, ϴ)
 

Box:
Asymmetric Stability loss 

Greater than Y_min Y_min

 
Y_max

Stability 
Output 
Bounds
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Results & Analysis : Certified Training on single-output models

25

● CT for single-output models 
for the 5 problematic outputs

Promising results !  5-10% drop in the fooling rates 
compared to the previous models

Baseline trainings

Data Augmentation

single-output
multi-output

Certified training



ANITI EVENT: Hands on Verification
6th March 2025

https://github.com/airbus/Airobas https://github.com/airbus/decomon
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