Robustness Verification: Neural Network's Surrogate

Melanie Ducoffe ANITI DAYS November 2024

Robustness during ML development (ARP6983)

ForMuLA: Formal Methods Use for Learning

Assurance – EASA & Collins Aerospace partnership 2

Property Requirement for Surrogate Models

Shows model vulnerabilities but not their absence >> Do not provide property verification guarantee. Naïve attacks schemes can be used for regression (FGSM, PGD)

Casting Local Verification as a Classification Property

 $y \longrightarrow s_{1} = y_{min} - y$ $s_{2} = y - y_{max}$

max_{z ∈Ω}g(Z;X)≤0

 $\operatorname{argmax}_{z \in \Omega} s(Z;X)=0$

Verification as an Exact Optimization problem

max_{z ∈Ω}g(Z;X)>0

- + convergence to the true optimum that implies robustness or non robustness.
- Not scalable to larger network
 SMT-solver [Marabou]
 Lipschitz optimization (Paul Novello)
 Mixed Integer Programming (VENUS)

No magical trick: white box setting

Verification as an Exact Optimization problem: MILP

Verification as a Relaxed Optimization problem: LIRPA

Verification and automatic differentiation

A Convex Relaxation Barrier to Tigh Robustness Verification of NNs, Salman et al.

- Model-<u>Research</u>
 <u>prototypes</u>:
 - Two hidden layers (165 neurons)
 - ReLu activation functions
 - Dense output layer(81)
- Test data: 1000 loads/stress points

Verification approach - Combinaison

	(1)	(2)	(3)	(4)	(5)	(6)
	A	В	\mathbf{C}	A+C	B+C	Pipeline A+B+C
#Tested	1000	1000	1000	1000/558	1000/446	1000/558/4
#True	-	554	558	558	558	-/554/4 = 558
#False	442	-	442	442	442	442/-/0 = 442
Runtime	10.7	3.3	267	19.8	267	10.7/1.96/3.91 = 16.6

-45% of test data are shown to be non locally stable

The "Adversarial attacks" step was able to find all non-stabilities

Low number of remaining test data to be evaluated by "C" after (A or A+B)

Significant decrease in computational time

Open source library: Airobas

Complete Verification Pipeline for Stability

Current models have **deceiving stability accuracy: -40%**. What tools are at our disposal?

- 1) XAI actionability: Reducing the problem complexity (input and output dimensions)
- **2)** Regularizing the training to balance between good <u>regression performance</u> and good <u>stability accuracy</u>

Robust 🚍 Accurate 🕂 Stable

Data Augmentation

Artificially increase the size of the dataset by applying domain-specific transformations on the input and output data. It introduces stability invariance.

Enhance stability during design/training via targeted data augmentation

AIRRUS

Data Augmentation: augmented groundtruth (Y, X', Θ -> Y')

Groundtruth

use the groundtruth label of the initial input

Stability clipping

clip the prediction of the adversarial input to lie within the stability bounds (Ymin, Ymax)

Results & Analysis : Robustness of each output

- Most of the outputs are **naturally Robust**
- About **40%** of outputs are **problematic**

→ Can we target those outputs ?

Certified Training (Meta Networks)

Certified training use <u>Incomplete</u> <u>Formal Methods</u> as a Meta Model to provide formal guarantees about a model's robustness against <u>domain-specific</u> <u>perturbations</u>.

Training Pipeline : Stability with Certified training

Results & Analysis : Certified Training on single-output models

Promising results ! 5-10% drop in the fooling rates compared to the previous models

Surrogate Neural Networks Local Stability for Aircraft Predictive Maintenance, FMICS 2024

Thomas Deltort

Ryma Boumazouza

Guillaume Poveda

Marion Cécile Martin

Audrey Galametz

ANITI EVENT: Hands on Verification 6th March 2025

https://github.com/airbus/Airobas

https://github.com/airbus/decomon