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SOLACE CIMI Thematic Semester : Stochastic control
and learning for complex networks
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Stochastic Networks 77?7

Models for computing infrastructure: Networks and data centers
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Resource Sharing in Networks




Resource Sharing in Networks

Coverage range of the BS

» Challenge: randomness, large-scale ...



Resource Sharing in Networks

Coverage range of the BS

» Challenge: randomness, large-scale ...
Stochastic Network: Discrete time, stochastic model restricted
to positive orthant, long-run behavior, analysis and optimization
Control over time: How to take decisions over time in order to
optimize certain objective function
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Sequential Decision Making

Dynamics
'
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select action a Policy (Information)

collect reward r;(a, s) Objectives

Objectives, a few examples:
Infinite discounted cost: max, E(}>-:2, afr(af, sT))
Average cost: max lim7_,0 +E(X [, r(aF, sT))



Finite Horizon

» Discrete time t=1,2,3,...,

> A finite set of states, finite state of actions,
» Arbitrary Markov dynamics p(s’|s, a)

» Finite horizon T



Finite Horizon

» Discrete time t=1,2,3,...,

> A finite set of states, finite state of actions,
» Arbitrary Markov dynamics p(s’|s, a)

» Finite horizon T

;
V(i) = mﬁxEW(Z_:Rt)



Finite Horizon (cont.)
Consider horizon T. Assume V7_1(j) is known for all j. Take
action a, which yields reward r(i, a).
What is the best reward we can get ?
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Finite Horizon (cont.)

Consider horizon T. Assume V7_1(j) is known for all j. Take
action a, which yields reward r(i, a).
What is the best reward we can get ?

r(i,a) + Y p(li:a) V1)

J

Then, the best action is

V(i) = max (r(i, a) + ZPU\/} 3)VT1(/))

We can first solve Vi(i) = max,{r(i,a)}, and then

V(i) = max, (r(i, a) + o 5, p(l7, a) VA())),

then Vz(i), ce VT(I)

Known as Optimality Equation, Dynamic Programming,
Bellman’s equation ...



Richard Bellman

1920 - 1984
American applied mathematician

Introduced Dynamic Programming (DP) as a method for solving a
complex problem by breaking it down into a collection of simpler
subproblems, solving each of those subproblems just once, and storing
their solutions.
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What is Reinforcement Learning

> Agent-oriented learning — learning by interacting with an
environment to achieve a goal

» Learning by trial and error

» can tell for itself when it is right or wrong
» explore vs. exploit trade-off



The RL setting
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The RL setting

Agent
F 3
’ State, Reward,
SFlmu!us, Gain, Payoff,
Situation Cost

Environment
(world)

—

» environment is the "Markov Chain".

Action,
Response,
Control

> Agent is given state S;, takes an action A;, and is returned a
sample of the reward R;y1 and next state S;ii.

Agent wants to learn V/(S;) ...



Q-function

Watkins, PhD thesis, 1994

RL allows us to estimate V/(S;) from samples of the
St, At, Rt+]_, 51_-+1, .

V(St)  Rep1 + \A/(St+1)



Q-function

Watkins, PhD thesis, 1994

RL allows us to estimate V/(S;) from samples of the
St, At, Rt+]_, 51_-+1, .

V(St)  Rep1 + \A/(St+1)

Theorem If all state and action pairs are "observed” infinitely
many times, then

V(S:) = V(S:)



Many faces of RL

Engineering

Computer Science

Economics

Neuroscience

Psychology




Branches of machine learning

Supervised Unsupervised
Learning Learning

Machine
Learning

Reinforcement
Learning
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Applications of RL

* Robotics

¢ Medicine

e Advertisement
* Resource management
Game playing ...



Some RL Successes

» Learned the world's best Backgammon player (Tesauro 1995)
» Helicopter autopilot (Ng, Coates et al. 2006+)
» ad placement, web site morphing, recommendation systems

» Human-level performance (Google Deepmind, 2015+)



DeepMind’'s AlphaGo

U":JZD.SVZ%U

':'“:° Google DeepMind

Challenge Match




Neurostimulation for epilepsy suppression
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Approximate Solution Methods

» RL finds optimal policies if policies and functions can be saved
in tables

» real world complex too large and comples

» Backgammon 10%° states, Go 10%7° states, Helicopter
continuous state space

How can we scale up the model-free methods for prediction and
control?



Value function approximation

» So far we have represented value function by a lookup table
V(s)
There are too many states and/or actions to store in memory

» |t is too slow to learn the value of each state individually
» Estimate value function with function approximation

V(s,w) ~ V(s)

» Generalise from seen states to unseen states
» Update parameter w



Atari Example: Learning

m —‘ » Rules unknown
» Learn directly from

=
| * game-play
» Pick actions on joystic,

see pixels and scores
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Democratic RL?

» RL (at large) has many success stories in the last two
decades...

» but it elies on very demanding computational /data volume
possibilities. E.g., games, data center control,...

» What about more "democratic” algorithms, especially for
networking?

» Explorations mechanisms can be made more efficient by
leveraging known structure/information?



Specifities of SN

> "rare” events
P sparse rewards
» physical queues, "infinite” state space

— we can use the underlying structure



Specifities of SN

> "rare” events
P sparse rewards
» physical queues, "infinite” state space

— we can use the underlying structure

Objectives
» Improve exploration
» Improve efficiency with lower data requirements

» Learning approximate optimal policies for SN



Specifities of SN

» Optimal policy might have a clear structure



Example Improve exploration: Toy example - birth and
death system

e

T t
' o8
—_— l0'0Q|l— — =
17010
e
I

X(t) = "Number of jobs in the queue"”

» Simplest model: M/M/1/K queue, constant BD rates.
» Parameters are unknown - in particular K
» Costs occur when blocking

» rare and sparse



Fleming-Viot particle systems to improve estimation

» Studied by Burdzy et al. in 1996 as genetic particle system
| | | I |

T T T | !

o 1 2 J-1 K

L__TJ

> N particles evolve independently - same dynamics

» When absorbed — reactivation to one of other N — 1



Fleming-Viot particle systems for probability estimation
(cont.)

Theorem: With FV, the estimation of blocking probability
converges to the real value

—— FVRL
35 — MC

0 15 30 45 60 75 90
Learning step

30/36



Lagrangian relaxation

Original problem

K
min Z E [Ck(N,(f, Sf(Nd)))}
¢ k=1

f SP(N“(t)) <M
k=1




Lagrangian relaxation (cont.)

Relax the constraint

K
m¢in Z E [Ck(Nfa Sf(Nd)))}

k=1
K
E (Zs (N®(t)) )

k=1




Lagrangian relaxation (cont.)

Unconstrained problem

min ﬁ: E [C(Ng, SP(N))| - w (/\/l —E (sz sf(/v¢)>>

k=1 k=1

K-dimensional problem = K unidimensional problems

min & [C(N?, SP(N%))] = WE (Lgs(noy—0)




Whittle's index heuristic

Definition (Whittle's index)

Wi (ny) = subsidy W such that is indifferent of action taken in
state n.




Whittle's index heuristic

Definition (Whittle's index)

Wi (ng) = subsidy W such that is indifferent of action taken in
state n.

» Serve bandit k if Wy(ng) > W optimal for relaxed problem

» Heuristic for original problem:
Serve the M bandits with highest value for Wj/(ny).



QWI : Learning Whittle's indices

15.5
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Value function (5 parallel projects)

—— RLNN

—— Q-learning

— Qwl

---- Optimal (Value iteration)
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Concluding remarks

» MDP and RL share a long history, with an elegant
mathematical framework,

» Microcosm within Al, including planning, acting, learning,
world modeling, knowledge representation

» Surge of interest in the SN community.

» To leverage the specific structures of the underlying of
stochastic network problems to develop tailored learning
algorithms



