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SOLACE CIMI Thematic Semester : Stochastic control
and learning for complex networks
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Stochastic Networks ??

Models for computing infrastructure: Networks and data centers
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Resource Sharing in Networks

Coverage range of the BS

Channel gain

curve

Arrivals

I Challenge: randomness, large-scale ...
Stochastic Network: Discrete time, stochastic model restricted
to positive orthant, long-run behavior, analysis and optimization
Control over time: How to take decisions over time in order to
optimize certain objective function
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Outline

I Basics Sequential Decision
I Basics RL
I Large scale RL
I Frugal RL
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Sequential Decision Making

Objectives, a few examples:
Infinite discounted cost: maxπ E(

∑∞
t=0 α

tr(aπ
t , sπ

t ))
Average cost: maxπ limT→∞

1
T E(

∑T
t=0 r(aπ

t , sπ
t ))
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Finite Horizon

I Discrete time t = 1, 2, 3, . . . ,
I A finite set of states, finite state of actions,
I Arbitrary Markov dynamics p(s ′|s, a)
I Finite horizon T

VT (i) = max
π

Eπ(
T∑

t=1
Rt)
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Finite Horizon (cont.)
Consider horizon T . Assume VT−1(j) is known for all j . Take
action a, which yields reward r(i , a).
What is the best reward we can get ?

r(i , a) +
∑

j
p(j |i , a)VT−1(j)

Then, the best action is

VT (i) = max
a

r(i , a) +
∑

j
p(j |i , a)VT−1(j)


We can first solve V1(i) = maxa{r(i , a)}, and then
V 2(i) = maxa

(
r(i , a) + α

∑
j p(j |i , a)V 1(j)

)
,

then V2(i), . . . ,VT (i)
Known as Optimality Equation, Dynamic Programming,
Bellman’s equation ...
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Richard Bellman
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Outline

I Basics Sequential Decision
I Basics RL
I Large scale RL
I Frugal RL
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What is Reinforcement Learning

I Agent-oriented learning – learning by interacting with an
environment to achieve a goal

I Learning by trial and error
I can tell for itself when it is right or wrong
I explore vs. exploit trade-off
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The RL setting

I environment is the ”Markov Chain”.
I Agent is given state St , takes an action At , and is returned a

sample of the reward Rt+1 and next state St+1.
Agent wants to learn V (St) ...
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Q-function

Watkins, PhD thesis, 1994

RL allows us to estimate V (St) from samples of the
St ,At ,Rt+1,St+1, . . .

V̂ (St)← Rt+1 + V̂ (St+1)

Theorem If all state and action pairs are ”observed” infinitely
many times, then

V̂ (St) =⇒ V (St)
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Many faces of RL
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Branches of machine learning

15 / 36



Outline

I Basics Sequential Decision
I Basics RL
I Large scale RL
I Frugal RL

16 / 36



Applications of RL
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Some RL Successes

I Learned the world’s best Backgammon player (Tesauro 1995)

I Helicopter autopilot (Ng, Coates et al. 2006+)

I ad placement, web site morphing, recommendation systems

I Human-level performance (Google Deepmind, 2015+)

18 / 36



DeepMind’s AlphaGo
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Neurostimulation for epilepsy suppression
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Approximate Solution Methods

I RL finds optimal policies if policies and functions can be saved
in tables

I real world complex too large and comples
I Backgammon 1020 states, Go 10170 states, Helicopter

continuous state space
How can we scale up the model-free methods for prediction and
control?
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Value function approximation

I So far we have represented value function by a lookup table
V̂ (s)

There are too many states and/or actions to store in memory
I It is too slow to learn the value of each state individually

I Estimate value function with function approximation

V̂ (s,w) ≈ V (s)

I Generalise from seen states to unseen states
I Update parameter w
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Atari Example: Learning

I Rules unknown
I Learn directly from

game-play
I Pick actions on joystic,

see pixels and scores
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Democratic RL?

I RL (at large) has many success stories in the last two
decades...

I but it elies on very demanding computational/data volume
possibilities. E.g., games, data center control,...

I What about more ”democratic” algorithms, especially for
networking?

I Explorations mechanisms can be made more efficient by
leveraging known structure/information?
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Specifities of SN

I ”rare” events
I sparse rewards
I physical queues, ”infinite” state space

=⇒ we can use the underlying structure

Objectives
I Improve exploration
I Improve efficiency with lower data requirements
I Learning approximate optimal policies for SN
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Specifities of SN

I Optimal policy might have a clear structure
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Example Improve exploration: Toy example - birth and
death system

I Simplest model: M/M/1/K queue, constant BD rates.
I Parameters are unknown - in particular K
I Costs occur when blocking
I rare and sparse
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Fleming-Viot particle systems to improve estimation

I Studied by Burdzy et al. in 1996 as genetic particle system

I N particles evolve independently - same dynamics
I When absorbed → reactivation to one of other N − 1
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Fleming-Viot particle systems for probability estimation
(cont.)

Theorem: With FV, the estimation of blocking probability
converges to the real value
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Lagrangian relaxation

Original problem

min
φ

K∑
k=1

E
[
Ck(Nφ

k ,S
φ
k (Nφ))

]
K∑

k=1
Sφ

k (~Nφ(t)) ≤ M
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Lagrangian relaxation (cont.)

Relax the constraint

min
φ

K∑
k=1

E
[
Ck(Nφ

k ,S
φ
k (Nφ))

]

E
( K∑

k=1
Sφ

k (~Nφ(t))
)
≤ M
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Lagrangian relaxation (cont.)

Unconstrained problem

min
φ

K∑
k=1

E
[
Ck(Nφ

k ,S
φ
k (Nφ))

]
−W

(
M − E

( K∑
k=1

Sφ
k (Nφ)

))

K-dimensional problem =⇒ K unidimensional problems

min
φ

E
[
C(Nφ,Sφ(Nφ))

]
−WE

(
1Sφ(Nφ)=0

)
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Whittle’s index heuristic

Definition (Whittle’s index)
Wk(nk) ≡ subsidy W such that is indifferent of action taken in
state nk .

I Serve bandit k if Wk(nk) ≥W optimal for relaxed problem
I Heuristic for original problem:

Serve the M bandits with highest value for Wk(nk).

34 / 36



Whittle’s index heuristic

Definition (Whittle’s index)
Wk(nk) ≡ subsidy W such that is indifferent of action taken in
state nk .

I Serve bandit k if Wk(nk) ≥W optimal for relaxed problem
I Heuristic for original problem:

Serve the M bandits with highest value for Wk(nk).

34 / 36



QWI : Learning Whittle’s indices
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Concluding remarks

I MDP and RL share a long history, with an elegant
mathematical framework,

I Microcosm within AI, including planning, acting, learning,
world modeling, knowledge representation

I Surge of interest in the SN community.
I To leverage the specific structures of the underlying of

stochastic network problems to develop tailored learning
algorithms
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