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Apprentissage low-resource : le cas des
/ANITI structures discursives - P. Muller et C. Braud

(1) Document-level NLP: beyond sentence boundaries
(2) What is discourse structure?

(3) Main issues with analyzing discourse automatically
(4) Proposed approaches for low-resource settings,

multilinguality and transfer



/Z/INITI Document-level NLP: example

Recurrent models typically factor computation along the symbol positions of the input and output
sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden
states h;, as a function of the previous hidden state /;_, and the input for position ¢. (FhiStifihefently)
Sequentialmature precludes parallelization within training examples, which becomes critical at longer
sequence lengths, as memory constraints limit batching across examples

and conditional
computation [26], while also improving model performance in case of the latter. (Phefufidamental

Non-local phenomena:
anaphora

mostly implicit, with some




/1IN T Textual coherence and discourse/dialogue

structure

William : does someone have clay for me?

QAP
QAP l : ; .
gwis : I am afraid I'm about to use mine

ljay : i need mine sorry

l Ack
William : kk A%

STAC

- relations between text units:

encode the coherence

- e.g. Question-Answer Pair,
Acknowledgment, Clarification,
Explanation, Result, Contrast ...

- structure: tree / graph over the
document

with linux Elaboration

noone: can some one help me 1\ Question-

Question- _jason: you ’re going to have to be
Elaboration more specific . just state your problem. )

s .
tech9iner: hello ? .. ahem..
(you are in ubuntu.. )
QAP Clarification
Question

(trappis: please please just
(skip ahead to your question |

(ubotu: did you get hit by a windmill ? i
<\i do n't know , could you explain it ? |
QAP

( _jason: tell tech9iner about msg the |
L bot )

Question
What is told to tech9iner about ?
""""""""""""""""""""""" msg the bot
What does trappist ask noone to do ?
—- just skip ahead to your question
How does guillem101 check ubotu messg ?
mm——— Y nanswerable

Molweni Ubuntu




/1IN T Textual coherence and discourse/dialogue
structure

What is at stake:

- implicit information
- intentions of the writer / of dialogue participants
- dialogue threads

—taken into account in a limited way in main document-level
applications (MT, Summarization..)




/ZINITI Discourse parsing: discourse structure analysis

Usually, 3 subtasks:

(1) Segmentation: determining basic relevant units (~clauses)

(2) Attachment/Structure prediction: determining the overall
structure

(3) Labelling: labelling the structure / prediction relation type

- Task (1): relatively “easy” on written text, harder on
conversations
- Tasks (2)+(3): usually done jointly, much harder



/ZINITI Discourse parsing: discourse structure analysis

1. Architect: Now make another one.

e
It should be orange and diagonally connected
in the vertical direction to the other blocks.

ATTRIBUTION

place orange 12 -4 .
place orange 02-4

place orange -1 2 -4
place orange -1 2 -4
place orange 12 -4
place orange 0 2 -4

2. Builder:

Interprovincial Pipe
Line Co. said

’
REASON Like that? ; Or should it be another
space over?

3. Architect: l Yup. ———» One space over.

because Canada’s o Bullder: place orange 12 -2
output of crude oil : place orange 0 2 -2

is shrinking. place orange -1 2 -2

remove orange-13-1 g
SAME-UNIT remove orange 13 -2

remove orange -1 2 -4
expansion of remove orange 02 4

. remove orange 12 -4
its system ;

RESTATEMENT-E

Like that? &~

it will delay a (US$705.6 mil- 5. Architect: T vup.
proposed two- lion)

step, 830 mil- A R
lion dollar Do that again with yellow blocks.

RST DT Minecraft




ZINITI Open problems

- high-level information: hard to annotate/provide supervision

- data exist in several languages, but with large disparities

- lack of normalization: competing frameworks, variations
across languages, different relation typologies, annotation
discrepancies

- Involves potentially large textual contexts

- In the case of dialogue, generally involve an extra-linguistic
context, e.g. human-robot collaboration, customer-relationship
management ...




ZINITI some approaches from ANITI members

Classic paradigm: fine-tuning of pretrained Language Models
(from small to large) —see Kate and Akshay presentation

To overcome some of the mentioned problems :

(1) Transfer:
(a) between languages e.g. [Metheniti et al. CODI 2024]
(b) between domains e.g. [Li et al., CODI 2024]
(c) from written to oral e.g. [Gravellier et al. EMNLP 2021]
(2) Weak supervision:
(a) exploiting attention matrices in FT PLMs e.g. [Li et al. EACL 2023]
(b) bootstrapping with weak classifiers (internship)
(c) data augmentation / generation
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/ZINITI Predicting discourse structure with minimal
supervision [Li et al. EACL 2023]

Task: predicting document-level structure = directed acyclic /TJ-TNQ_E,‘,,,O,“,,.O,,
graph (text spans and relations) @~

— data scarcity for many domains / language QA%EQ

(— supervised: 20-30% drop cross-domain transfer)

Ack : V'IP Ack
A

Question: how to extract structure with little supervision?

— Dialogue structure knowledge in PLMs? L EWsgmematon Structure attachment
A > i a2 :: Q le1, e2]
Approach: = O)
- PLM fine-tuned on related tasks g Np— L s | (47
- use attention scores to extract the structure | » |— — | \p envedl
. " > —> é [e4, es]




/ZINITI Predlctlng discourse structure with minimal
SUpervision [Li et al. EACL 2023]

- BART FT on sentence ordering in/cross domain, based on speech
| speaker info. (best FT task tested)
- Building trees: for each head, use attention score (+Eisner algo.)
to compute ‘attachment’ between text units
- Choose best: unsupervised score or semi-sup. (10-50 examples)

Doc Fine-tuning Tasks AttnHeads layer12 x headl6 DepStruct HeadSel
v N~ | e

- - == 40 —>0—0 O |
! 3 - ! emi-
: sup. |—> d

— ¥ => 2Q—>0->0—-0

PLM 5 - o ! S

— _> ! Unsup.
: es |es —eq ? d3 O O ’O )O DAs

—> — E
E €4 E

LS J \_ i D
R Y Y

Step1: which PLM?

Step2: how to build trees?

Step3: which attention head?

Train on — BART +SO-DD + SO-STAC
Test with | Fy Fy F,
LAST BSL 26.8 56.8 26.8
Gold H 57.6 58.2 59.5
Unsup Hg 56.6 56.8 56.7
Unsup H, 56.4 97.1 97.2
SCIIli-Sllp 10 57.00.012 57.20.012 57-10.026
Semi-sup 30 57.30‘005 57.30.013 59.2()‘009
Semi-sup 50 57.40.004 57.70.005 59.30_007




/AINITI current work and perspectives

- Integrated approaches: multilingual, multi-task, multi-framework

- hierarchical classification to combine frameworks with different
relation sets

- weak supervision to combine corpora and models

- extend to other document-level phenomena (e.g. argumentation)

- situated conversational parsing needs better integration with world
representation
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