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Many examples of high-risk uses: [Pro21]
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Pervasive hallmarks of non-formal XAI

[RSG16, LL17, RSG18, Rud19]

LIME, SHAP; Anchor; Interpretability, ...

6 We have disproved ALL these hallmarks. More detail later

Formal XAI @ ANITI
2/19 November 17, 2023



Pervasive hallmarks of non-formal XAI

[RSG16, LL17, RSG18, Rud19]LIME, SHAP; Anchor; Interpretability, ...

6 We have disproved ALL these hallmarks. More detail later

Formal XAI @ ANITI
2/19 November 17, 2023



Pervasive hallmarks of non-formal XAI

[RSG16, LL17, RSG18, Rud19]LIME, SHAP; Anchor; Interpretability, ...

6 We have disproved ALL these hallmarks. More detail later

Formal XAI @ ANITI
2/19 November 17, 2023



What is an explanation?

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Original DT [PM17]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Rewritten DT
Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨ ) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨ ) = Skips

§ What is an explanation?

§ Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

§ Explanation: set of literals (or just features) in <COND>; irreducibility matters !

§ E.g.: explanation for v = (␣x1,␣x2, x3)?

§ It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1
§ Explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u
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Formal explanations

Formal XAI in classification:

§ Explanations rigorously defined

§ Explanation for Why? question:
§ Minimal set of features sufficient for ensuring prediction c = κ(v)
§ I.e. pick minimal X Ď F s.t.

@(z P F). [^iPX (zi = vi)Ñ(κ(z) = c)]

§ Explanation for Why Not? question:
§ Minimal set of features sufficient for changing prediction c = κ(v)
§ I.e. pick minimal Y Ď F s.t.

D(z P F). [^iRY(zi = vi)^ (κ(z) = c)]

§ Duality results, e.g. between XPs for Why? and Why Not? questions [INAM20, INM19a]

§ More problems: enumeration, membership, preferences, ...

Represents a rule:
IF ^iPX (zi = vi) THEN (κ(z)= c)
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Progress in formal XAI -- until 2022

[INM19b, IIM20, MGC+20, MGC+21, HIIM21, IM21, IMS21, CM21, IIM22, HII+22, IISMS22]
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Progress on computing one XP
§ Advances between 2019 and 2022:

§ Polynomial-time:
§ Naive-Bayes classifiers (NBCs) [MGC+20]
§ Decision trees (DTs) [IIM20, HIIM21, IIM22]
§ XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]
§ Monotonic classifiers [MGC+21]
§ Propositional languages (e.g. d-DNNF, ...) [HII+22]
§ Additional results [CM21, HII+22]

§ Comp. hard, but effective (efficient in practice):
§ Random forests (RFs) [IM21, IISMS22]
§ Decision lists (DLs) [IMS21]
§ Boosted trees (BTs) [INM19b, IISMS22]

§ Comp. hard, and ineffective (hard in practice):
§ Neural networks (NNs) [INMS19]
§ Bayesian networks (BNs) [SCD18]
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Progress in formal XAI -- recent progress

[INM19b, IIM20, MGC+20, MGC+21, HIIM21, IM21, IMS21, CM21, IIM22, HII+22, IISMS22, HM23a]
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Progress on computing one XP
§ Advances up until 2023:

§ Polynomial-time:
§ Naive-Bayes classifiers (NBCs) [MGC+20]
§ Decision trees (DTs) [IIM20, HIIM21, IIM22]
§ XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]
§ Monotonic classifiers [MGC+21]
§ Propositional languages (e.g. d-DNNF, ...) [HII+22]
§ Additional results [CM21, HII+22]

§ Comp. hard, but effective (efficient in practice):
§ Random forests (RFs) [IM21, IISMS22]
§ Decision lists (DLs) [IMS21]
§ Boosted trees (BTs) [INM19b, IISMS22]

§ Comp. hard, but some practical scalability:
§ Neural networks (NNs) [HM23a]

§ Comp. hard, and ineffective (hard in practice):
§ Bayesian networks (BNs) [SCD18]
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Results for RFs in 2021 (with SAT) [IM21]

Dataset (#F #C #I) RF CNF SAT oracle AXp (RFxpl) Anchor

D #N %A #var #cl MxS MxU #S #U Mx m avg %w avg %w
ann-thyroid ( 21 3 718) 4 2192 98 17854 29230 0.12 0.15 2 18 0.36 0.05 0.13 96 0.32 4
appendicitis ( 7 2 43) 6 1920 90 5181 10085 0.02 0.02 4 3 0.05 0.01 0.03 100 0.48 0
banknote ( 4 2 138) 5 2772 97 8068 16776 0.01 0.01 2 2 0.03 0.02 0.02 100 0.19 0
biodegradation ( 41 2 106) 5 4420 88 11007 23842 0.31 1.05 17 22 2.27 0.04 0.29 97 4.07 3
heart-c ( 13 2 61) 5 3910 85 5594 11963 0.04 0.02 6 7 0.07 0.01 0.04 100 0.85 0
ionosphere ( 34 2 71) 5 2096 87 7174 14406 0.02 0.02 22 11 0.11 0.02 0.03 100 12.43 0
karhunen ( 64 10 200) 5 6198 91 36708 70224 1.06 1.41 35 29 14.64 0.65 2.78 100 28.15 0
letter ( 16 26 398) 8 44304 82 28991 68148 1.97 3.31 8 8 6.91 0.24 1.61 70 2.48 30
magic ( 10 2 381) 6 9840 84 29530 66776 0.51 1.84 6 4 2.13 0.07 0.14 99 0.91 1
new-thyroid ( 5 3 43) 5 1766 100 17443 28134 0.03 0.01 3 2 0.08 0.03 0.05 100 0.36 0
pendigits ( 16 10 220) 6 12004 95 30522 59922 2.40 1.32 10 6 4.11 0.14 0.94 96 3.68 4
ring ( 20 2 740) 6 6188 89 19114 42362 0.27 0.44 11 9 1.25 0.05 0.25 92 7.25 8
segmentation ( 19 7 42) 4 1966 90 21288 35381 0.11 0.17 8 10 0.53 0.11 0.31 100 4.13 0
shuttle ( 9 7 1160)3 1460 99 18669 29478 0.11 0.08 2 7 0.34 0.05 0.14 99 0.42 1
sonar ( 60 2 42) 5 2614 88 9938 20537 0.04 0.06 36 24 0.43 0.04 0.09 100 23.02 0
spectf ( 44 2 54) 5 2306 88 6707 13449 0.07 0.06 20 24 0.34 0.02 0.07 100 8.12 0
texture ( 40 11 550) 5 5724 87 34293 64187 0.79 0.63 23 17 3.24 0.19 0.93 100 28.13 0
twonorm ( 20 2 740) 5 6266 94 21198 46901 0.08 0.08 12 8 0.28 0.06 0.10 100 5.73 0
vowel ( 13 11 198) 6 10176 90 44523 88696 1.66 2.11 8 5 4.52 0.15 1.15 66 1.67 34
waveform-40 ( 40 3 500) 5 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 11.93 0
wpbc ( 33 2 78) 5 2432 76 9078 18675 1.00 1.53 20 13 5.33 0.03 0.65 79 3.91 21

Rigorous & faster
than Anchor !
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texture ( 40 11 550) 5 5724 87 34293 64187 0.79 0.63 23 17 3.24 0.19 0.93 100 28.13 0
twonorm ( 20 2 740) 5 6266 94 21198 46901 0.08 0.08 12 8 0.28 0.06 0.10 100 5.73 0
vowel ( 13 11 198) 6 10176 90 44523 88696 1.66 2.11 8 5 4.52 0.15 1.15 66 1.67 34
waveform-40 ( 40 3 500) 5 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 11.93 0
wpbc ( 33 2 78) 5 2432 76 9078 18675 1.00 1.53 20 13 5.33 0.03 0.65 79 3.91 21

Rigorous & faster
than Anchor ! Formal XAI @ ANITI
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Results for NNs in 2019 (w/ SMT/MILP) [INMS19]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

Formal XAI @ ANITI
8/19 November 17, 2023
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Scales to (a few)
tens of neurons... Formal XAI @ ANITI
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Recent results for NNs (w/ Marabou [KHI+19]) [HM23a]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons

Formal XAI @ ANITI
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DeepLever: publicly available explainers

1. Naive bayes and linear classifiers: https://github.com/jpmarquessilva/expxlc

2. Monotone classifiers: https://github.com/jpmarquessilva/xmono

3. Decision trees: https://github.com/yizza91/xpg

4. Tractable circuits: https://github.com/XuanxiangHuang/Xddnnf

5. Decision lists: https://github.com/alexeyignatiev/minds

6. Random forests: https://github.com/yizza91/RFxpl

7. Tree ensembles (+ boosted trees): https://github.com/alexeyignatiev/xreason

8. Decision trees (probabilistic Xps): https://github.com/yizza91/praxp

9. ...

Formal XAI @ ANITI
10/19 November 17, 2023
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The emergence of formal explainability -- timeline

2019 2020 2021 2022 2023

XP definitions

AXp, CXp, duality

Tractability

DTs, NBCs, etc.

Efficient solutions

RFs, DLs, BTs, etc.

Queries

Relev., Enum., etc.

Input distrib.

Inp. constr.

Prob. XPs

DTs, NBCs, etc.

Feat. attr.

Oblique DTs
Certification

Distil., etc.

DNNs

Formal XAI @ ANITI
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And disproved pervasive hallmarks of non-formal XAI

[RSG16, LL17, RSG18, Rud19]

Formal XAI @ ANITI
12/19 November 17, 2023



Interpretable models NOT interpretable -- DTs
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§ Case of optimal decision tree (DT) [HRS19]
§ Explanation for (0, 0, 1, 0, 1), with prediction 1?

§ Clearly,
IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

§ But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)
1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

Formal XAI @ ANITI
13/19 November 17, 2023
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Interpretable models NOT interpretable -- large DTs
[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

Formal XAI @ ANITI
14/19 November 17, 2023
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Model-agnostic explanations are incorrect often!
§ Errors in model-agnostic explanations known since 2019 [INM19b, Ign20, YIS+23]

§ Results for boosted trees, due to non-scalability with NNs [CG16]

§ Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%

lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

§ Obs: Results are not positive even if we count how often prediction
changes [NSM+19]

§ In this case, BNNs were used, to allow for model counting...

§ Feature attribution also assessed, with similar results [INM19b, NSM+19, Ign20, YIS+23]

Obs: most often,
Anchor’s rules
are NOT rules...

Formal XAI @ ANITI
15/19 November 17, 2023
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How wrong can model-agnostic explanations be?

§ Another possible scenario:

Incorrect explanations (XPs):
Classifier for deciding bank loans
Two samples:
Bessie– (v1,Y), Clive– (v2,N)

Explanation X: age=45, salary= 50K
X is consistent with Bessie– (v1,Y)
X is consistent with Clive– (v2,N)
6 different outcomes & same explanation !?

Formal XAI @ ANITI
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Exact SHAP scores can mislead...
[HM23b, HM23c, HM23d, MH23]
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DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 3 0
2 0 0 1 0 3
3 0 1 0 1 1
4 0 1 1 1 1
5 1 0 0 1 1
6 1 0 1 1 1
7 1 1 0 1 1
8 1 1 1 1 1
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DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u, t2u t1, 2u

DT2 t1u, t2u t1, 2u

Adversarial Examples
DT l0-minimal AEs
DT1 t1, 2u

DT2 t1, 2u

SHAP Scores
DT Sv(1) Sv(2) Sv(3)
DT1 0.000 0.000 -0.125
DT2 -0.125 -0.125 0.125

SHAP [LL17] most often does NOT agree with SHAP scores... & SHAP scores are misleading...
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Instance ((1, 1, 1), 1). Which features matter?
[HM23b, HM23c, HM23d, MH23]
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Instance ((1, 1, 1), 1). Which features matter? Say 1& 2?
[HM23b, HM23c, HM23d, MH23]
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AXps/CXps OK
[HM23b, HM23c, HM23d, MH23]
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AXps/CXps OK, AExs OK
[HM23b, HM23c, HM23d, MH23]
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AXps/CXps OK, AExs OK, Svs ...
[HM23b, HM23c, HM23d, MH23]
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AXps/CXps OK, AExs OK, Svs not OK!!!
[HM23b, HM23c, HM23d, MH23]
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A take-home message...

[RSG16, LL17, RSG18, Rud19]

For high-risk / safety-critical uses of AI/ML do NOT use non-formal XAI !

I.e. unsuitable for trustworthy AI !
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Ongoing & future research

§ Distance-restricted AXps/CXps [HM23a]
§ Links with adversarial robustness

§ Certification of formal explainability [HM23e]
§ Initial results for monotonic classifiers

§ More expressive explanations [IISM23]
§ Use rel. op. P instead of =

§ Understand the limitations of (exact) SHAP scores [HM23b, HM23c, HM23d, MH23]

§ Inference of input constraints [YIS+23]
§ Not all points in feature space may be meaningful

§ Tractability results [CM23, CCM23]
§ E.g. oblique DTs

§ Reduced explanation size [IHI+23]
§ Given cognitive limits of human decision-makers [Mil56]
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Q & A

Joint work with X. Huang, O. Létoffé, M. Cooper, N. Asher, Y. Izza,
A. Ignatiev, N. Narodytska, J. Planes, A. Morgado, R. Bejar, et al.
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