AI for Good Two directions

Michèle Sebag

TAU, CNRS - INRIA - LISN, U. Paris-Saclay

ANITI Days Nov. 16th, 2023

Innia

イロン イ団 とく ヨン イヨン

AI for Good Two directions

э

Al in the field.

I. AI for good

The environment: GAFAM

An AI niche for academics ? Choose Your Weapon: Survival Strategies for Depressed AI Academics Julian Togelius and Georgios N. Yannakakis (2023) https://arxiv.org/pdf/2304.06035.pdf

Example: Toward recommending a job for all

- Coll. Pole Emploi & ENSAE-CREST
- Evaluation campaigns

More:

Guillaume Bied et al.: Toward Job Recommendation for All. IJCAI 2023: 5906-5914

Al in the field.

II. Doing no harm

The context: energy-hungry AI

- Data beat algorithms
- Resisting the "More is Better" motto Green AI.
 Roy Schwartz, Jesse Dodge, Noah A. Smith, Oren Etzioni, (2019) https://arxiv.org/pdf/1907.10597.pdf

Example: Meta learning & adapting ML hyper-parameters

- Few, expensive meta-examples (OpenML repository)
- Designing meta-features

More:

Herilalaina Rakotoarison et al: Learning meta-features for AutoML. ICLR 2022

Where we are

Toward a Job for All Overview

Results Fairness Partial conclusion

Affordable ML with Meta-learning

Meta-features for tabular data Experimental validation What did we learn

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Position of the problem

Al for Social Good: Reducing unemployment

- UN Sustainable Development Goals:
 - Goal 8: Decent work and Economics Growth
 - Goal 10: Reduced Inequalities

Reducing frictional unemployment

- By reducing search costs and suggesting non-obvious opportunities at low marginal cost
- Growing literature in economics: Belot et al. (2019); Altmann et al. (2023); Behaghel et al. (2023); Le Barbanchon et al. (2023)

Highly consequential application of Machine Learning:

- Jobs determine livelihoods and social positions
- "High-risk" according to forthcoming European AI Act

Why, when, how...

How this all started

- Yet another PhD founding a start-up to optimize ad banners ! (2010)
- There should be a real problem with same algorithmic challenges...
- Recommending jobs ? T. Schmitt's PhD (2014-2018) ISN grant
- Collaboration with ENSAE and Pole Emploi: VADORE (2018-now)

Dataia grant

< 日 > < 同 > < 三 > < 三 > 、

First campaign with Pole Emploi (2022); second (2023).

State of art

Related Work

- Expert systems, e.g. WCC ELISE (SDR@PE)
- Collaborative filtering Bell et al., 2007 (Netflix prize)
- 2016 & 2017 RecSys challenges on job data

Xiao et al., 2016; Volkovs et al., 2017

e-recruitment systems based on proprietary data

Kenthapadi et al., 2017 (LinkedIn) Zhao et al., 2021 (CareerBuilder)

The specifics of VADORE

Objectives

- Design a Job Recommender System for Job seekers
- Based on Pole Emploi proprietary data
- ... that scales up (400,000 job seekers in a region)

Two challenges

- Sparsity of interaction matrix
 Phase 1: only signed contracts (sparsity 99.5 %)
 Phase 2: also applications
- Build a service for all mostly minimum wages; small signal to noise ratio

Highly Sensitive and Complex Data

- Source: Pôle emploi
- Scope: Auvergne-Rhône-Alpes region (France); 2019-mid 2022
- Job seekers (1.2M)
 - Qualification: experience, education, skills, driver's licence, languages, means of transportation, occupation
 - "Preferences": contract, full-time status, commuting time, working hours, reservation wage
 - Other: textual information (CV), socio-demographic variables, past employment history, accompaniment by the PES
- Job ads (2.2M)
 - Job and firm description (text), occupation, requirements (skills, education), contract, labor conditions
- Labor market interactions
 - Hires (285k) monitored by the PES
 - Applications (1.3M)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

MUSE: Multi-head Sparse E-Recruitment

A three tier architecture

1st tier, Muse.0

fast; serves to filter most promising (top 1,000) job ads \boldsymbol{x} for each job seeker \boldsymbol{y}

 2nd tier, Muse.1 thanks to filter, can consider features f(x, y) (e.g. distance; skill match) Two heads:

- Muse.1.Hire (trained from contracts)
- Muse.1.App (trained from applications)

 3rd tier, Muse.2 builds on the top of Muse.1.Hire and Muse.1.App

イロト 不得 トイヨト イヨト

Overview of Muse.0

Three modules

- Geographic
- Skills (11,000 skills in ontology)
- General

イロト イポト イヨト イヨト

э

Overview of Muse.0, follow'd

Triplet loss

Loss =
$$\sum_{x,y,y'} [s(x,y') - s(x,y) + m]_+$$

with

- job seeker x hired on job ad y
- y' another ad, (uniform in same week as y)

```
• margin m = 1
```

Role

- Fast inference
- Filtering top 1,000 job ads y for each x
- Enabling more expensive feature construction on 2nd tier.

Muse.1 and Muse.2

Goals

- Re-rank the top 1,000 ads selected by the first tier, using more sophisticated attributes (*e.g.* geographic distance; matching salary;)
- Muse.1.Hire: trained from hirings (signed contracts)
- Muse.1.App: trained from applications.
- Muse.2: on top of both, trained from hirings
- All: triplet loss.

イロト イボト イヨト イヨト

Results.

I. Public data

► Baseline: XGBOOST based on RecSys 2017 Challenge winner

Volkovs et al., 2017

Perf. indicator: Recall@k (fraction of x s.t. y is ranked in top-k)

Recall@	XGBOOST	MUSE.0	Muse.2
10	26.83	22.88	30.1*
20	35.59	31.55	40.2*
100	58.88	53.80	63.2*
1000	86.47*	82.13	-
Training time (hours)	1.83	7.7	1.25
Recommendation time (seconds)	1.4	0.0004	0.02

Comparative results of $\rm MUSE$ and $\rm XGBOOST:$ recall, overall training time and recommendation time $\it per$ job seeker.^1

 $\mathrm{M}\mathrm{USE}:$ decent Scalability and Recall

 $^{^{1}}$ Computational times measured on Intel® Xeon® Silver 4214Y CPU @ 2.20GHz, with 187 GB RAM and a Tesla T4 GPU.

Results

II. Pole Emploi data

In the lab

Train data: 85% weeks, Jan. 2019 - Sept 2022

Complementary of the modules

	Single module		Single module All modules but one		Muse.0		
R@	M _{geo}	M_{Gal}	M _{sk}	M _{geo}	M_{Gal}	M _{sk}	
100	15.43	34.79	4.80	39.97	47.28	51.96	53.80

 Table: MUSE.0: Impact of the three geographical, skills and general modules on the recall@100 through ablation studies. Left: module standalone. Right: MUSE.0 with all modules but one.

Michele Sebag

Campaigns (March 2022; June 2023)

Evaluation in the field: Recall is not the main thing for PE...

- Check whether recommendations are well accepted
- Identify recommendations that are inappropriate
- Assess combinations of Muse and SDR@PE Mix: rank top-k (Muse) after SDR
- Assess impact of interface (neutral; encouraging)

Campaigns (March 2022; June 2023)

Feedback

- Same critiques for all variants (this job is too far; I changed my preferences; this job is not for me, I don't have driving licence)
- When neutral interface, most appreciated (significantly so) variant: mixture of SDR and Muse;
- When "encouraging" interface: no significant difference among variants (and satisfaction significantly decreased).

Where we are

Toward a Job for All Overview

Results Fairness Partial conclusion

Affordable ML with Meta-learning

Meta-features for tabular data Experimental validation What did we learn

イロト イヨト イヨト イヨト 二日

The Issue of Gender Biases

Recommender systems trained on real-world data may learn job seekers' and recruiters' biases

The Washington Post

The Intersect

Google's algorithm shows prestigious job ads to men, but not to women. Here's why that should worry you.

Amazon scraps secret AI recruiting tool that showed bias against women

By Jeffrey Dastin

RETAIL OCTORER 11, 2018 / 1:04 AM / UPDATED 4 YEARS AGO

8 MIN READ f 🕊

SAN FRANCISCO (Reuters) - Amazon.com Inc's AMZN.O machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

- Left: Google Ads Washington Post NB: Same hold for Facebook ad delivery
- Right: Reuters Amazon.

Datta et al, 2015 Ali et al., 2019

イロト イポト イヨト イヨト

Gender gaps

In data: due to

- Job seeker behavior (applications):
 - Gendered differences in assessment of success likelihood (over or under-confidence) & risk aversion
 Cortés et al., 2022
 - Gendered valuation of job ad characteristics, e.g. occupation, wage vs. commute
 Le Barbanchon et al., 2021
- Recruiter side: gendered treatment of applications

```
Arnoult et al., 2021
```

In recommendations

- Differences are more or less acceptable (depends)
- Issues:
 - Legal issues
 - Illegitimate wrt common fairness definitions or perceptions

Pierson et al., 2017

- Trust in recommendations and in the institution
- Perpetuation of gender stereotypes
- Downstream effects on e.g. the gender wage gap (with effects on pensions, intra-household bargaining ...)

Related work

Algorithmic fairness

Immense literature, mostly on binary classification & decision-making Survey: Mehrabi et al. (2019)

Growing one on recommender systems

In for the labor market

Audit studies of job recommender systems

Survey: Ekstrand et al. (2021)

Survey: Kumar et al. (2023)

Kuhn & Zhang, WP

Gender bias: questions and modelling

Questions

- Is recommendation performance different for men and women?
 - Measure: recall@k
- Are different jobs shown to women and men? :
 - Wage, distance, executive status, contract type, working hours, male-dominated occupation
 - Fit to job seeker's search criteria (average fit w.r.t. distance / occupation / wage / contract / working hours)

Model

- ▶ Gender *G* (=1 if woman)
- Outcome Y: characteristics of algorithm's top-1 recommendation (e.g. wage)
- Naive average gender effect (AGE):

$$\delta = \mathbb{E}[Y|G = 1] - \mathbb{E}[Y|G = 0]$$

- AGE controlled w.r.t.:
 - Qualifications: experience, education, skills, driver's licence, languages, means of transportation, occupation
 - Both qualifications and "preferences": contract, full-time status, commuting time, working hours, reservation wage

Michele Sebag

Average Gender Effect

- X: covariate, job seeker characteristics
- ▶ $Z \subset X$: controls (qualifications, or qualifications + preferences)
- Model inspired from potential outcome formalization Robinson 88

$$Y = E[Y|X] + (T - E[T]) \times \tau(X) + \varepsilon$$

using a partially linear regression model:

$$Y = \tau G + \mu_0(Z) + \varepsilon, \quad E(\varepsilon|Z,G) = 0$$

where:

- \succ τ : parameter of interest (gender difference unexplained by Z)
- $\mu_0(Z)$: nuisance function (valuation of Z in terms of Y for men)
- Main condition: common support (job seekers must be sufficiently comparable in terms of Z)
- $\blacktriangleright \tau$ is estimated using Double Machine Learning

Chernozhukov et al., 2018

Results

Comparing with hirings

 \blacktriangleright $\rm MUSE$ trained on hiring data: does it worsen the actual M/W gaps ?

Comparing with applications

- No impact of recruiter's prejudices (apart from anticipations)
- Applications reflect jobseekers' expected utility

Measured as

$$(Y^{data} - Y^{rec}) = \tau G + \mu_0(Z) + \varepsilon$$

- Y^{rec}: characteristic of recommended job
- ▶ Y^{data}: characteristic of hire / application

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Recommendation performance

Top k	Recall@k	Men	Women	p-value
10	0.256	0.243	0.267	0.000
20	0.351	0.333	0.366	0.000
100	0.590	0.576	0.603	0.000

Recall higher for W than for M (3.3 points for recall@20)

- Remains significant when controlled for:
 - Qualifications + Preferences: (2.6 points, p< 0.0001)</p>
 - Qualifications + Preferences + Distance to job: (2.3 points, p= 0.001)

► Why ?

- Data imbalance ? (W = 54% of hires in training set) No: gap remains significant when downsampling
- Tentative interpretation: W's preference for near-by job ads.

イロト 不得 トイヨト イヨト

Average Gender Effects on characteristics

	$\hat{\delta}$ (Pop.)	$\hat{\delta}$ (Overlap)	$\hat{\tau}_Q$	$\hat{ au}_{QP}$
Wage (log)	-0.023***	-0.016***	-0.007***	-0.004***
Distance (km)	-0.474***	-0.231***	0.077*	0.117***
Executive position	-0.004***	-0.009***	-0.004***	-0.001
Long-term contract	-0.040***	-0.034***	-0.016***	-0.012***
Male-dominated job	-0.411***	-0.219***	-0.033***	-0.033***
Hours worked	-2.934***	-1.957***	-0.684***	-0.409***
Fit to search param.	-0.028***	-0.019***	-0.013***	-0.011***

Notes: Results for n = 228, 625 job seekers. $\hat{\delta}$: difference in means; $\hat{\delta}$ (overlap): difference in means for individuals w/ propensity $\in [0.05, 0.95]$; $\hat{\tau}_{QF}$: DML estimator when controlling for preferences and preferences.

Summary

- Average Gender Effects:
 - Less paid (2.3 pp), less often in executive positions, less often in male-dominated occupations ...
- Gaps reduced but still significant: when controlled for qualifications Q when controlled for qualifications and preferences QP

イロト 不得 トイヨト イヨト

Average Gender Effect: Recommendations vs Hirings

Hires		Qualifications		Qualifications & Preferences		Preferences
	τ_Q (Hire)	τ_Q (Rec.)	τ_Q (Difference)	τ_{QP} (Hire)	τ_{QP} (Rec.)	τ_{QP} (Difference)
Wage (log)	-0.012***	-0.007***	0.004	-0.010***	-0.005**	0.005*
Distance (km)	-0.935	0.344***	1.479*	-0.654	0.391**	1.109
Executive position	-0.007**	-0.003	0.004	-0.006*	-0.002	0.003
Long-term contract	-0.035***	-0.025***	0.010	-0.033***	-0.024**	0.010
Male-dominated job	-0.141***	-0.053***	0.086***	-0.141***	-0.055***	0.085***
Hours worked	-1.435***	-0.934***	0.479***	-1.286***	-0.715***	0.508***
Fit to search param.	-0.021***	-0.020 ***	0.002	-0.021***	-0.019***	0.003

Notes: Results for hired job seekers satisfying the overlap condition (n = 25, 783). DML estimators for gender gaps in hires, recommendations, and the hire-recommendation differences. Col. 1-3 present results when controlling for qualifications (τ_Q), col. 4-6 results controlling for qualifications and preferences (τ_{QP}).

Summary

- Same gaps as in hirings
- If anything, gaps are reduced (wage, hours worked, male-dominated occupations) in recommendations

Average Gender Effect: Recommendations vs Applications

Applications		Qualificatio	ons		Qualific	ations & Pro	eferences
	τ_Q (App.)	τ_Q (rec.)	Diff. of Diff.		τ_{QP} (App.)	τ_{QP} (rec.)	Diff. of Diff.
Wage (log)	-0.013***	-0.005**	0.008***		-0.011***	-0.003*	0.007***
Distance (km)	-5.721***	0.081	5.962***		-4.326***	0.136	4.555***
Executive position	-0.006***	-0.001	0.004		-0.004**	-0.000	0.003
Long-term contract	-0.033***	-0.025***	0.010		-0.029***	-0.019**	0.011
Male-dominated job	-0.115***	-0.060***	0.056***		-0.115***	-0.059***	0.058***
Hours worked	-1.410***	-0.763***	0.668***		-1.126***	-0.486***	0.651***
Fit to search param.	-0.023***	-0.016***	0.008***		-0.020***	-0.016***	0.005*

Notes: Results for applications of jobsekers satisfying the overlap condition. DML estimators for gender gaps in applications, recommendations, and the application-recommendation differences. Col. 1-3 present results when controlling for qualifications (τ_Q), col. 4-6 results controlling for qualifications and preferences ($\tau_Q \rho$).

Summary

- Similar gaps as in Hirings
- Recommendations do not amplify the gaps

イロト 不得 トイヨト イヨト 二日

Partial Conclusion

Lessons learned

- Choice of features very informative (ML vs economics)
- Muse: Performance ok wrt scalability and wrt recall (in the lab)
- Biases: they exist; in data, in recommendations.
- Adversarial approaches: suppress bias, at the expense of recall

Perspectives

- Addressing biases: toward recommending a set of job ads
- The real performance indicator: i) decreasing time-to-job; ii) quality of found job.
- Muse \rightarrow a subscription service (also recommended by France Travail).
- Adapting Muse for recruiters

イロト 不得 トイヨト イヨト 二日 二

Where we are

Toward a Job for All

Overview Results Fairness Partial conclusion

Affordable ML with Meta-learning

Meta-features for tabular data Experimental validation What did we learn

ヘロト ヘロト ヘヨト ヘヨト

э.

Hardly affordable: Computer vision, Games, NLP...

$\mathbf{AI} \neq \mathbf{GAMA}$

- Cost of ML: (...) GPT-3 could have easily cost 10 million dollars to train.
- Wanted: Affordable AI

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Control layer in algorithmic platforms

In some domains

- No Free Lunch
- \blacktriangleright No killer algorithm \Rightarrow Algorithm portfolios / Many options
- Algorithm performance governed by hyper-parameter values

Hyper-parameter tuning: a critical task

In constraint programming Rice 76 In stochastic optimization Grefenstette 87 In machine learning (meta-learning) Bradzil et al. 93

Crossing the chasm: software life beyond research labs

- Automatically adjust algorithm parameters depending on current problem
- Select best (expected) algorithm depending on current problem

Meta-Learning

Michele Sebag

Al for Good Two directions

Wolpert & Macready, 97

Position of the problem

An optimization problem

- Black-Box optimization of L, with
- \mathcal{L} : expensive objective function
- \triangleright Θ (hyper-parameter space): Mixed discrete and continuous search space

International Challenges

CP & CSP: ASLib challenge	Bischle et al. 16
 Open Algorithm Selection Challenge 	Lindauer et al. 17
 AutoML challenge 	Guyon et al., 15-16
AutoDL challenge	Guyon et al. 19-21

Automated Machine Learning: Methods, Systems, Challenges

イロト 不得 トイヨト イヨト

Meta-Learning

Rice 76

Learn a performance model

- Gather problem instances (benchmark suite)
- Design descriptive features for pb instances
- Run algorithms on pb instances
- Build meta-training set:

 $\mathcal{E}_j = \{ (\text{desc. } x_i \text{ of } i\text{-th pb instance, perf. of } j\text{-th algo}) \}$

- Learn performance model $\widehat{\mathcal{F}}_j$ from \mathcal{E}_j
- Decision making: for pb x

Select Algo
$$j^* = \arg \max_{j} \left\{ \widehat{\mathcal{F}}_{j}(\mathbf{x}) \right\}$$

Michele Sebag

Hand-crafted meta-features for tabular data

Hand-crafted meta-features	Alcobaca et al. 20, Rivolli et al. 22			
shallow m.f: number of instances, num	ber of classes			
statistical m.f.: entropy, average mutual information of features with target				
Iandmarks: performance of inexpensive classifiers (e.g., Decision Tree)				
	Pfahringer et al. 00			

Ex: Auto-sklearn meta-features	Feurer et al., 2015
Number of features	Number of features with missing values
Ratio numerical to nominal	Mean of categorical feature symbols
Mean of feature kurtosis coefficients	Dataset ratio
Mean of feature skewness	Mean of class probabilities

Limitation: Meta-features

- (meant to) Capture a distribution: the dataset
- (must be) Inexpensive
- (currently) Insufficiently expressive to capture dataset similarity w.r.t. AutoML

Michele Sebag

Where we are

Toward a Job for All

Overview Results Fairness Partial conclusion

Affordable ML with Meta-learning

Meta-features for tabular data Experimental validation What did we learn

ヘロト ヘロト ヘヨト ヘヨト

Meta-features for tabular data

Given

- An ML algorithm/pipeline
- Its configuration space $\Theta \subset {\rm I\!R}^d$
- ► A set of benchmark problems A, B, C,...

We have

SVM, RF, AutoSkLearn, ...

(available for all datasets)

$$A \to x_A \in {\rm I\!R}^D$$

Target representation: (available for benchmark datasets)

 $A
ightarrow z_A \subset \Theta$

set of configurations reaching top performance on A

We want

A good metric on the set of datasets: such that the top configurations of the nearest neighbors of A yield good performance on A.

Michele Sebag

Hand-crafted meta-features do not reflect target metrics

- ► Datasets A, B, and C
- x_C is the nearest neighbor of x_A in Θ
- \blacktriangleright *z*_B is the nearest neighbor of *z*_A in 2^{Θ}

(Euclidean distance) (Wasserstein distance)

Michele Sebag

Metabu: Learning meta-features for tabular data

Rakotoarison et al. 22

Principle

Map the basic representation onto a learned representation with same metric as the target representation

MetaBu Algorithm

- 1. Given benchmark data A, B, C, \ldots with target representation z_A, z_B, z_C, \ldots
- 2. Find intermediate representation y_A, y_B, y_C, \ldots in \mathbb{R}^d s.t.

$$\|y_i - y_j\| \approx d(z_i, z_j)$$

Multi-dimensional scaling, Kruskal, 64

(Adjusting dimension d: see below)

3. Find mapping from basic representation (hand-crafted meta-features) onto intermediate representation:

Optimal Transport

Optimal transport in one slide

Cuturi 13; Cuturi & Salomon, 17; Peyre & Cuturi 18

Formal background

- Given distribution μ on Ω_x , distribution ν on Ω_y
- Given a transport cost $c : \Omega_x \times \Omega_y \mapsto \mathbb{R}$
- Find γ distribution on $\Omega_x \times \Omega_y$, s.t. $\gamma_{x,.} = \mu$, $\gamma_{.,y} = \nu$ minimizing

$$\int_{\Omega_x \times \Omega_y} c(x, y) \mathrm{d}\gamma(x, y)$$

Michele Sebag

イロト 不得 トイヨト イヨト

41 / 56

Optimal transport, a second slide

► Wasserstein: map x onto y such that it minimizes the expectation of cost c(x, y) = ||x - y||

 Gromov-Wasserstein: enforce a rigid transport (preserving distances among pairs of points)

・ロン ・雪 とく ヨン・

METABU

Algorithm Given x initial representation and u intermediate representation, train mapping ψ to optimize:

$$\psi^* = \underset{\psi \in \Psi}{\arg\min} \left\{ d_{FGW;\alpha} \left(\psi_{\sharp} \mathbf{x}, \mathbf{u} \right) + \lambda \|\psi\| \right\}$$
(2)

with λ the regularization weight and $\|\psi\|$ the L_1 norm of ψ .

Output

 $\psi_{\sharp} \mathbf{x}$ is new representation, function of the initial representation \mathbf{x} (known, inexpensive, for all datasets) with similar metric as the intermediate representation (which itself approximates the metric of the target representation).

Michele Sebag

AI for Good Two directions

・ コット 今日 マ キョット キョット

Where we are

Toward a Job for All

Overview Results Fairness Partial conclusion

Affordable ML with Meta-learning

Meta-features for tabular data Experimental validation What did we learn

ヘロト ヘロト ヘヨト ヘヨト

э.

Experimental setting

Goal of experiments

► Compare METABU performance with baseline meta-features:

- Hand-crafted meta-features (135)
- AutoSkLearn (38)
- SCOT (4)
- Landmarks (8)

Feurer et al. 15 Bardenet et al. 13 Pfahringer et al. 00

Settings

- ML algorithms / pipeline:
 - Adaboost (4), Random Forest (6), SVM (8), Auto-sklearn pipeline (110)
- Benchmark: 72 classification datasets (OpenML CC-18) (Leave one out validation)

Task 1: METABU captures the target metric

Dataset $A \rightarrow$ nearest neighbor B according to

- METABU features
- vs Baselines
- vs Oracle (Target) representation

Performance: NDCG(ranks neighbors) wrt oracle representation (the higher, the better)

METABU meta-features better capture the target metric

・ 同 ト ・ ヨ ト ・ ヨ ト

Task 2: Use METABU metric to achieve Auto-ML

Dataset $A \rightarrow$ best configurations for its nearest neighbor B**Performance**: Average performance rank (the lower the better).

METABU configuration sampler outperforms baselines

< ロ > < 同 > < 回 > < 回 >

Task 3: Use METABU within AutoML search

Initialize AutoML search using METABU metric AutoML optimization:

- AutoSkLearn
- PMF

Feurer et al., 15

Fusi et al., 18

Using METABU meta-features to initialize AUTOSKLEARN and PMF search consistently improves over current AUTOSKLEARN and PMF.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computational Effort

・ロト ・四ト ・ヨト ・ヨト

э

Where we are

Toward a Job for All

Overview Results Fairness Partial conclusion

Affordable ML with Meta-learning

Meta-features for tabular data Experimental validation What did we learn

ヘロト ヘロト ヘヨト ヘヨト

э.

In summary

$\operatorname{Metabu:}$ Meta-learning for Tabular Data

- learns linear combinations of the hand-crafted meta-features.
- captures the topology of target representation, i.e., top hyper-parameter configurations.
- outperforms SoA meta-features on various configuration spaces.

Code available https://github.com/luxusg1/metabu

What did we learn ? Intrinsic dimension of the set of datasets

Measuring the intrinsic dimension of a space

Facco et al., 17

- ► For each point x, compute $\mu_x = \frac{d(x,y^{(2)},)}{d((x,y^{(1)})}$. with $y^{(1)}$ and $y^{(2)}$ first and second nearest neighbor of x
- Order points: draw line $(i, \log \mu_i)$ with $\mu_i < \mu_{i+1}$
- intrinsic dimension d: approximates slope of line $(i, \log \mu_i)$

Intrinsic dimension of OpenML-CC

Alg. / Pipeline	$dim\;\Theta$	Intrinsic. dim
Adaboost	4	8
Random Forest	6	9
SVM	8	14
Auto-sklearn	110	6

What did we learn ? Sensitivity of ML alg. wrt meta-features

Importance of meta-features

Random Forest vs Adaboost

- PercentageOfInstancesWithMissingValues: percentage of missing values
- classProbabilityMin: Minimum of class probabilities
- var_importance: features importance of the DT model for each attribute

Michele Sebag

AI for Good Two directions

A (10) N (10)

Perspectives

Meta-representation

- From algo-dependent meta-features
- ... to a comprehensive representation

From a metric on datasets

to evaluating a priori domain adaptation, transfer learning

Assessing ML evaluation

- Measuring the diversity of a benchmark
- Does Auto-ML overfit ?

Thanks!

Guillaume Bied

gane Hoffmann

Christophe Caillou

Michele Sebag

Solal Nathan

Al for Good Two direction

Christphe Ga

55 / 56

< ≣⇒

Bruno Crépon

Thanks!

Heri Rakotoarison

Isabelle Guyon

Marc Schoenauer

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…