

Novement

Nicolas Mansard – LAAS-CNRS

Université de Toulouse

Immense progress in 5 years

Unitree quadruped

BostonDynamics Atlas

Cf Le dessous des images "<u>Atlas, le robot star de Boston Dynamics</u>"

Good old control heuristics

Model of the motion capabilities

From a known state, this control will bring the robot in that new state

Predictive control

Decide: future robot trajectory

By optimizing an objective function (eg minimum energy)

Imposing:

- Known initial state
- Known evolution model (simulator)
- ... and other constraints

Université de Toulouse

Predictive control

Efficient solvers ...

□ Features expected from a good optimal control solver

- Stable prediction: multiple shooting
- Sparsity: differential dynamic programming
- Strict constraints: augmented Lagrangian
- Our solver incorporates all three !

Performance on real case studies

- 4 trot cycles for a quadruped: 8K vars, 12 iterations, 9ms / iter
- 2 steps for a humanoid: 12K vars, 18 iterations, 13ms / iter

... for efficient problems

Efficient solver ... for efficient problems

Optimize 1 sec of preview every 1 ms (2000 variables)

Ludovic Righetti

Efficient solver ... for efficient problems

Ewen Dantec

Efficient solver ... for efficient problems

Thomas Corberes

Steve Tonneau

$$\min_{\substack{X=(Q,\dot{Q}), \\ U=\tau}} \int_0^T l(x_t, u_t) dt$$

s.t. $x(0) = \hat{x},$
 $\dot{x}(t) = f(x(t), u(t)), \forall t=0..T$

Trajectory optimization $U: t \rightarrow u(t)$ Motion planning Policy optimization $\Pi: x \rightarrow u = \Pi(x)$ Reinforcement learning

Memory of motion c

 $\min_{\substack{X=(Q,\dot{Q}), \\ U=\tau}} \int_0^T l(x_t, u_t) dt$ s.t. $x(0) = \hat{x},$ $\dot{x}(t) = f(x(t), u(t)), \forall t=0..T$

Belman principle $\Pi(x) = \underset{u}{\operatorname{argmin}} Q(x, u)$ $Q(x, u) = l(x, u) + Q(x', \Pi(x))$

Pierre-Alexandre Leziart Thomas Flayols

 $\min_{\substack{X=(Q,\dot{Q}), \\ U=\tau}} \int_0^T l(x_t, u_t) dt$ s.t. $x(0) = \hat{x},$ $\dot{x}(t) = f(x(t), u(t)), \forall t=0..T$

- trajectory optimization
 super-linear convergence
 real-time computation
 constraint satisfaction
- local minima (no global policy)
- difficulty with discontinuous dynamics
- no inclusion of multi-modal sensing

- (global) policy optimization
 handles discontinuities
 multi-modal sensing inclusion
 - no guaranteed convergence
 - little use of model information
 - difficult transfer to robots
 - no constraint satisfaction

de Toulous

Toward RL solvers with mathematical guarantees

Université de Toulouse

We should both OPTIMISE and LEARN

the movements of a robot !

Trajectory optimization is necessary

- 10,000 variables in 10 ms
- Accurate convergence, constraints satisfaction, generalization

Policy learning is necessary

- Globalization using a memory of motion
- Toward super-linear reinforcement algorithms

ANITI : building hybrid intelligence

Artificial & Natural Movements

Université de Toulouse

