Generative Models for Satellite Image Analysis Learning with little or complex data

Valentine Bellet, Mathieu Fauvel, Jordi Inglada, Sivia Valero-Valbuena, Yoël Zerah

CESBIO, Université de Toulouse, CNES/CNRS/INRAe/IRD/UPS, Toulouse, FRANCE

Context

Land Cover Classification

Physic constraint auto-encoder

Conclusion and perspectives

Context

Land Cover Classification

Physic constraint auto-encoder

Conclusion and perspectives

Chair Learning with little or complex data (Prof. Nicolas Dobigeon - IRIT-INPT)

► Themes

- AI and physical models
- Learning from noisy data
- Multi-source & -scale time series
- Members CESBIO:
 - Mathieu Fauvel, INRAe
 - Jordi Inglada, CNES
 - Julien Michel, CNES
 - Silvia Valero, UT3
- ANITI Ressources
 - 2 PhD (Region & CNES): Y. Zérah & V. Bellet
 - 2 Ms
 - 1 engineer (CS-Group)

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Information extraction from EO imagery

- Land cover/use mapping
- Bio/geo-physical variable estimation
- Change detection and dynamic analysis

- Physical modeling
- Data Science / Machine Learning

Valentine Bellet, Artificial intelligence for ecosystem monitoring

Yoël Zerah, Generative Models for Mapping Land Cover Changes with Time Series of Satellite Images

Context

Land Cover Classification

Physic constraint auto-encoder

Conclusion and perspectives

$$\mathbf{Z} = \mathbf{B} \begin{bmatrix} \mathbf{X}^* + \mathbf{P} \end{bmatrix} \mathbf{\Gamma}$$

T Université de Toulouse

$$\mathbf{Z} = \mathbf{B} \begin{bmatrix} \mathbf{X}^* + \mathbf{P} \end{bmatrix} \mathbf{\Gamma}$$

T Université de Toulouse

$$\mathbf{Z} = \mathbf{B} \begin{bmatrix} \mathbf{X}^* + \mathbf{P} \end{bmatrix} \mathbf{\Gamma}$$

T Université de Toulouse

$$\|\mathbf{Z}^{i}-\mathbf{Z}^{j}\|_{F}^{2}=||\mathbf{B}\left(\mathbf{X}^{i*}\mathbf{\Gamma}^{i}-\mathbf{X}^{j*}\mathbf{\Gamma}^{j}\right)||_{F}^{2}+||\mathbf{B}\left(\mathbf{P}^{i}\mathbf{\Gamma}^{i}-\mathbf{P}^{j}\mathbf{\Gamma}^{j}\right)||_{F}^{2}+2\left\langle \mathbf{B}\left(\mathbf{X}^{i*}\mathbf{\Gamma}^{i}-\mathbf{X}^{j*}\mathbf{\Gamma}^{j}\right),\mathbf{B}\left(\mathbf{P}^{i}\mathbf{\Gamma}^{i}-\mathbf{P}^{j}\mathbf{\Gamma}^{j}\right)\right\rangle _{F}$$

Model 2/2 - Variational Sparse Gaussian Process

Optimize a lower bound of the log-likelihood (ELBO) [HMG15]

$$\mathcal{E}(q) = \sum_{i=1}^{N} \mathbb{E}_{q'(g(\mathbf{Z}^{i})|\boldsymbol{\theta}^{\vee},\boldsymbol{\theta})} \Big[\log p(\mathbf{y}^{i}|g(\mathbf{Z}^{i})) \Big] - \mathsf{KL} \Big[q(g(\mathbf{Z}_{u})|\boldsymbol{\theta}^{\vee}) \| p(g(\mathbf{Z}_{u})|\boldsymbol{\theta}) \Big],$$

with

$$q(g(\mathbf{Z}_{u})|\boldsymbol{\theta}^{\mathsf{v}}) \sim \mathcal{N}_{\mathsf{M}}(\mathbf{m}, \mathbf{S})$$

$$q'(g(\mathbf{Z}^{i})|\boldsymbol{\theta}^{\mathsf{v}}, \boldsymbol{\theta}) \sim \mathcal{N}_{1}(g(\mathbf{Z}^{i})| \mathbf{k}_{\mathsf{M}i}^{\top} \mathbf{K}_{\mathsf{M}\mathsf{M}}^{-1} \mathbf{m}, \mathbf{k}(\mathbf{Z}^{i}, \mathbf{Z}^{i}) - \mathbf{k}_{\mathsf{M}i}^{\top} \mathbf{K}_{\mathsf{M}\mathsf{M}}^{-1} (\mathbf{K}_{\mathsf{M}\mathsf{M}} - \mathbf{S}) \mathbf{K}_{\mathsf{M}\mathsf{M}}^{-1} \mathbf{k}_{\mathsf{M}i})$$

Expectation approximate with MC sampling and reparametrisation trick

Generative Models for Satellite Image Analysis

Data set

- All S2 acquisitions between [01-2018, 12-2018]
- 10 bands + 3 spectral indices
- ► T = 303 & D = 13
- 23 land cover classes
 - Training: 4000 pixels/class
 - Validation: 1000 pixels/class
 - Test: 10,000 pixels/class
 - 9 random (train, val, test) sets

Training	Validation	Test			
92 000	23 000	230 000			

Generative Models for Satellite Image Analysis November 17, 2023

	mTAN-MLP	mTAN-SVGP	linInter-SVGP	linInter-RF
OA (%)	71.5	77.4 (0.2)	67.3 (0.4)	65.4 (0.4)
Time (s)	1207	1317.4	336.6	54.6

Publications:

- Valentine Bellet, Mathieu Fauvel, and Jordi Inglada. "Land Cover Classification with Gaussian Processes using spatio-spectro-temporal features." In: IEEE Transactions on Geoscience and Remote Sensing (Jan. 2023). DOI: 10.1109/TGRS.2023.3234527. URL: https://hal.science/hal-03781332
- Valentine Bellet et al. "End-to-end Learning for Land Cover Classification using Irregular and Unaligned SITS by Combining Attention-Based Interpolation with Sparse Variational Gaussian Processes." working paper or preprint. July 2023. URL: https://hal.science/hal-04112115

Context

Land Cover Classification

Physic constraint auto-encoder

Conclusion and perspectives

- Distribution of GT biased
- ▶ Use the physical model as the decoder in a AE framework: no GT needed for training.

Université

- Variational AE with constrained Prior
 - Truncated Gaussian
 - Auto-regressive
- Yoël Zérah, Silvia Valero, and Jordi Inglada. "Physics-Driven Probabilistic Deep Learning for the Inversion of Physical Models With Application to Phenological Parameter Retrieval From Satellite Times Series." In: IEEE Transactions on Geoscience and Remote Sensing 61 (June 2023). DOI: 10.1109/TGRS.2023.3284992. URL: https://hal.science/hal-03837736

Generative Models for Satellite Image Analysis

RMSE	BelSAR 2018	Barrax 2018	LAI Barrax 2021	Wytham 2018	ALL	Barrax 2018	CCC Barrax 2021	Wytham 2018	ALL
MLP-Reg	1.22	1.43	0.48	1.77	1.24	83.92	84.53	101.35	88.08
Prosail-VAE	1.30	1.42	0.72	1.21	1.16	27.60	20.5 1	80.78	42.33

Generative Models for Satellite Image Analysis NNIT November 17, 2023

Context

Land Cover Classification

Physic constraint auto-encoder

Conclusion and perspectives

Université de Toulouse

Conclusions

Generative Models for Satellite Image Analysis

- More robust to noisy data
- More robust to limited (no) training data
- More accurate

Perspectives

ANITI 2.0 - RELEO

- More data source
- Richer prior distribution
- Meteo & Agro model
- Essential Biodivisity/Climate variables
- Industrial Chair

Bibliography

- [1] Valentine Bellet, Mathieu Fauvel, and Jordi Inglada. "Land Cover Classification with Gaussian Processes using spatio-spectro-temporal features." In: IEEE Transactions on Geoscience and Remote Sensing (Jan. 2023). DOI: 10.1109/TGRS.2023.3234527. URL: https://hal.science/hal-03781332.
- [2] Valentine Bellet et al. "End-to-end Learning for Land Cover Classification using Irregular and Unaligned SITS by Combining Attention-Based Interpolation with Sparse Variational Gaussian Processes." working paper or preprint. July 2023. URL: https://hal.science/hal-04112115.
- [3] James Hensman, Alex Matthews, and Zoubin Ghahramani. "Scalable Variational Gaussian Process Classification." In: In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics. 2015, pp. 351–360.
- [4] Yoël Zérah, Silvia Valero, and Jordi Inglada. "Physics-Driven Probabilistic Deep Learning for the Inversion of Physical Models With Application to Phenological Parameter Retrieval From Satellite Times Series." In: IEEE Transactions on Geoscience and Remote Sensing 61 (June 2023). DOI: 10.1109/TGRS.2023.3284992. URL: https://hal.science/hal-03837736.

This work is licensed under a Creative <u>Commons "Attribution-ShareAlike 4.0 International</u>" license.

Université de Toulouse