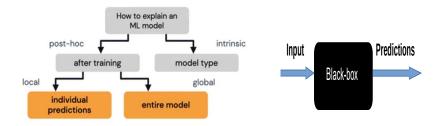
Empowering Data-driven AI by Argumentation and Persuasion: Main Achievements

Chair	
Co-Chairs	

Leila Amgoud Emiliano Lorini Philippe Muller (CNRS, IRIT) (CNRS, IRIT) (UPS, IRIT)

PhD students

Vivien Beuselinck Xinghan Liu Henri Trenquier


Goals of the chair

To use advanced logics and argumentation models to explain predictions of machine learning models.

- ML models carry out predictions
- We want good predictions and know why the model made them
 - Why was the student's application rejected?
 - What can the student do to change the situation?
- XAI approaches

Research questions

- 1) Which properties should be satisfied by an explanation function?
- 2) What are the different types of explanations?
- 3) How to persuade users by those explanations?
- 4) How to generate explanations in an efficient way?

Contributions

- 1) Axiomatic foundations of XAI
- 2) Formal analysis of various types of explanations
- 3) Dialogical explanations
- 4) Generation of abductive explanations

1) Axiomatic foundations of XAI

a) Axioms: List of properties that an explainer should satisfy.

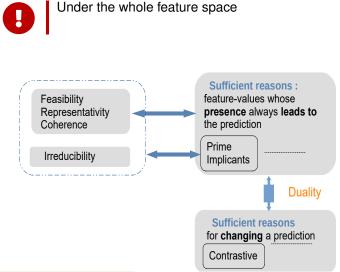
- clarify assumptions underlying an explainer
- shed light on weaknesses/strengths of an explainer
- compare different (family of) explainers

Notations

- E : a set of all partial assignments of values to features
- X : feature space (complete assignments or instances)
- C : a set of classes
- $\kappa : \mathcal{X} \to C$ a classifier
- $\mathbf{F}: \mathcal{C} \to \mathcal{P}(\mathbb{E})$ an explainer

Let **F** be an explainer and $x, x' \in C$

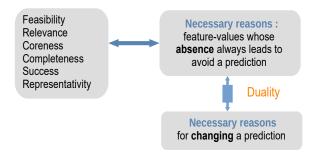
Success	$\mathbf{F}(x) \neq \emptyset.$
Non-Triviality	$\forall L \in \mathbf{F}(x), L \neq \emptyset.$
Irreducibility	$\forall L \in \mathbf{F}(x) \text{ and } \forall t \in L, \exists I \in \mathbf{X}, L \setminus \{t\} \subseteq I.$
Feasibility	$\forall L \in \mathbf{F}(x), \exists l \in X_{TR}(x) \text{ s.t. } L \subseteq l.$
Representativity	$\forall l \in X_{TR}(x), \exists L \in \mathbf{F}(x) \text{ s.t. } L \subseteq l.$
Relevance	$\forall L \in \mathbf{F}(x)$ and $\forall t \in L$, t is relevant to x.
Coreness	$\forall L \in \mathbf{F}(x)$ and $\forall t \in L, t$ is core to x.
Exhaustivity	$\forall t \in Lit_T$, if t is relevant to x, then $\exists L \in \mathbf{F}(x), t \in L$.
Completeness	$\forall t \in Lit_T$, if t is core to x, then $\exists L \in \mathbf{F}(x), t \in L$.
Coherence	If $x \neq x'$, then $\forall L \in \mathbf{F}(x), \forall L' \in \mathbf{F}(x'), L \cup L'$ is inconsistent.


	Vacation	Concert	Meeting	Exhibition	Hiking
<i>X</i> ₁	0	0	1	0	0
<i>X</i> 2	1	0	0	0	1
<i>X</i> 3	0	0	1	1	0
<i>X</i> 4	1	0	0	1	1
<i>X</i> 5	0	1	1	0	0
<i>x</i> ₆	0	1	1	1	0
<i>X</i> ₇	1	1	0	1	1

- $\{(V, 0)\} \in F(0)$
- $\{(M, 0)\} \in \mathbf{F}(1)$

 $\{(V,0), (M,0)\}$ is consistent $\Rightarrow \exists I \in X \text{ s.t. } \{(V,0), (M,0)\} \subseteq I$

F violates Coherence


b) Characterization: List of properties that uniquely defines a function

b) Characterization: List of properties that uniquely defines a function

Under the whole feature space

B

c) Impossibility result

- An explanation function which generates prime implicants violates Coherence
 - Provides incorrect explanations
 - Limits of LIME, Anchors
 - Limits of (statistical) approaches
- No explainer can generate (a subset of) prime implicants and guarantees both existence (Success) and correctness (Coherence) of explanations

Under a **subset** of the space

2) Formal analysis of various types of explanations

a) Modal logics for modelling explanations of classifier systems

(I) Logic of "white box" classifiers: complete knowledge of the classifier

- Basic operators: Instance-quantifying modality
- Types of explanation modelled: abductive, contrastive, counterfactual

Prime implicant
$$\mathsf{PImp}(\lambda, x) =_{def} \Box \left(\lambda \to \left(\mathsf{t}(x) \land \bigwedge_{\rho \in \mathsf{Atm}(\lambda)} \langle \mathsf{Atm}(\lambda) \setminus \{\rho\} \rangle \neg \mathsf{t}(x) \right) \right)$$

Abductive explanation $AXp(\lambda, x) =_{def} \lambda \wedge PImp(\lambda, x)$

(II) Logic of "black box" classifiers: partial knowledge of the classifier

Extension: classifier-quantifying modality ■ (⇒ product modal logic)
Crucial distinction: Objective vs subjective explanation

Subjective abductive explanation SubAXp(λ , x) =_{def} \blacksquare AXp(λ , x)

(III) Distance-based semantics for counterfactual conditionals: relativized $(\Box \rightarrow X, \text{ with } X \subseteq^{fin} Var)$ and unrelativized $(\Box \rightarrow)$

2) Formal analysis of various types of explanations

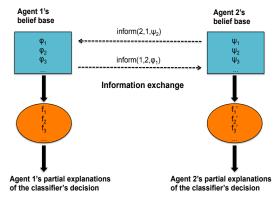
- a) Modal logics for modelling explanations of classifier systems: Key results
 - Complexity of satisfiability

	"White box"	"Black box"
Finite fixed prop. variables	Polynomial	Polynomial
Infinite prop. variables	NP-complete	EXPTIME-hard,
		in NEXPTIME

- Proof theories
- "Inexpressibility" result for counterfactual conditionals:

In the infinite variable case, the language of unrelativized counterfactual conditionals is not expressive enough to distinguish the concrete distance-based from the abstract similarity-based semantics.

2) Formal analysis of various types of explanations


b) Modals logics for causal reasoning

- Opening the box: classifier with internal layers/nodes ≈ causal model
- Languages with increasing expressiveness:
 - Causal necessity/possibility
 - Interventionist conditionals
 - Causal counterfactual conditionals
- Modelled notions: actual cause, causal explanation
- Conceptual contribution: novel rule-based semantics for causal reasoning
- Complexity results: satisfiability checking (ST) and model checking (MC)
 - ST and MC for causal necessity is NP-complete
 - MC for interventionist conditionals is in Δ^P₂
- Algorithmic aspects: Reduction of MC to SAT and SAT-based algorithm

3) Dialogical explanations

Rich logical language suitable for representing

- various types of explanations (abductive, contrastive, ...)
- interactive explanations (multi-agent dynamic epistemic setting)

A weak abductive explanation (wAXp) for $\kappa(x)$ is $E \in \mathbb{E}$ s.t. i) $E \subseteq x$ ii) $\forall y \in X$ s.t. $E \subseteq y, \kappa(y) = \kappa(x)$ An abductive explanation (AXp) is a subset-minimal wAXp.

A

There are often constraints on feature space

Integrity constraints ~> non-feasible instances

- Years of work < age</p>
- No two distinct students may have the same ID card value

Dependency constraints ~> dependencies between assignments

■ Social security number → surname

Superfluous explar	nations	Redundant explanat	ions
• $\kappa_1(x) = \neg f_1$	$f_1 \land \neg f_2 \to \bot$	• $\kappa_2(x) = f_1 \vee f_2$	$f_2 \rightarrow f_1$
• $x = \langle (f_1, 0), (f_2, 0) \rangle$	$\kappa_1(x) = 1$	• $x = \langle (f_1, 1), (f_2, 1) \rangle$	$\kappa_2(x) = 1$
• $E_1 = \{(f_1, 0)\}$	$E_2 = \{(f_2, 0)\}$	• $E_1 = \{(f_1, 1)\}$	$E_2 = \{(f_2, 1)\}$

Exponential number of explanations

• $\kappa_3(x) = f_n$ $f_n \equiv (\sum_{i=1}^n f_i)$	$\int_{a_1}^{-1} f_i \geq \lfloor n/2 \rfloor$
---	--

•
$$x = \{(f_i, 1) \mid i = 1, ..., n\}$$

• $\binom{n}{k}$ AXp's, where $k = \lfloor \frac{n}{2} \rfloor$: all size-k subsets of

$$\{(f_i, 1) \mid i = 1, \dots, n-1\}$$

and {(*f*_{*n*}, 1)}

 $\kappa_3(x) = 1$

a) Three novel types of abductive explanations under constraints

A coverage-based PI-explanation of $\kappa(x)$, with $x \in \mathbb{F}[C]$, is any $E \in \mathbb{E}$ s.t.

- 1) $E \subseteq x$,
- 2) $\forall y \in \mathbb{F}[C]$. $((E \subseteq y) \to (\kappa(y) = \kappa(x))),$
- 3) $\nexists E' \in \mathbb{E}$ s.t E' satisfies 1) and 2) and strictly subsumes E in $\mathbb{F}[C]$.

Superfluous explanations

- $\kappa_1(x) = \neg f_1$ $f_1 \land \neg f_2 \to \bot$
- $x = \langle (f_1, 0), (f_2, 0) \rangle$
- $E_1 = \{(f_1, 0)\}$ $E_2 = \{(f_2, 0)\}$ $E_3 = \{(f_1, 0), (f_2, 0)\}$
- $\operatorname{cov}_{\mathbb{F}[C]}(E_2) = \operatorname{cov}_{\mathbb{F}[C]}(E_3) \subset \operatorname{cov}_{\mathbb{F}[C]}(E_1)$

a) Three novel types of abductive explanations under constraints

Redundant explanations

- $\kappa_2(x) = f_1 \vee f_2$
- $x = \langle (f_1, 1), (f_2, 1) \rangle$
- $E_1 = \{(f_1, 1)\}$ $E_2 \to (f_2, 1)$

Exponential number of explanations

- $\kappa_3(x) = f_n$
- $x = \{(f_i, 1) \mid i = 1, ..., n\}$
- The X AXp's are discarded
- κ₃(x) has a single CPI-Xp: {(f_n, 1)}

$f_n \equiv \left(\sum_{i=1}^{n-1} f_i \ge \lfloor n/2 \rfloor\right)$

 $f_2 \rightarrow f_1$

 $E_3 = \{(1, 1),$

a) Three novel types of abductive explanations under constraints

Minimal coverage-based PI-explanation

A minimal coverage-based PI-explanation of $\kappa(x)$ is a subset-minimal CPI-Xp of $\kappa(x)$.

Preferred coverage-based PI-explanation

A preferred coverage-based PI-explanation of $\kappa(x)$ is a **representative** of the set of miminal CPI-Xp's of $\kappa(x)$.

a) Three novel types of abductive explanations under constraints

Explanation	Complexity of testing	Complexity of finding one
wAXp	co-NP-complete	polytime FP ^{NP}
AXp	P ^{NP}	FP ^{NP}
CPI-Xp	Π ₂ ^P -complete	$FP^{\Sigma_2^P}$
mCPI-Xp	Π_{2}^{P} -complete	$FP^{\Sigma_2^P}$
pCPI-Xp	$\Pi_2^{\overline{P}}$ -complete	$FP^{\Sigma_2^P}$

 $\mathsf{FP}^{\mathcal{L}}$ is the class of function problems that can be solved by a polynomial number of calls to an oracle for the language \mathcal{L} .

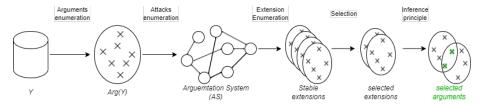
a) Three novel types of abductive explanations under constraints

 $\mathcal{T}:$ a sample of feasible instances

dCPI-Xp

A dataset-based CPI of $\kappa(x)$ is any $E \in \mathbb{E}$ such that:

	Complexity	Complexity
Explanation	of testing	of finding one
dwAXp	Р	polytime
dAXp	Р	polytime
dCPI-Xp	Р	polytime
dmCPI-Xp	Р	polytime
dpCPI-Xp	Р	polytime
wAXp	co-NP-complete	polytime
AXp	P ^{NP}	FP ^{NP}
CPI-Xp	Π ^P ₂ -complete	$FP^{\Sigma_2^P}$
mCPI-Xp	$\Pi_2^{\overline{P}}$ -complete	$FP^{\Sigma_2^P}$
pCPI-Xp	$\Pi_2^{\overline{P}}$ -complete	$FP^{\Sigma_2^P}$


 $\mathsf{FP}^{\mathcal{L}} \text{ is the class of function problems that can be solved by a polynomial number of calls to an oracle for the language \mathcal{L}.}$

Properties satisfied by each type of explanation

	wAXp	АХр	CPI-Xp	mCPI-Xp	pCPI-Xp	dCPI-Xp	dmCPI-Xp	dpCPI-Xp
Success	\checkmark							
Non-Triv.	\checkmark							
Irreduc.	×	\checkmark	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Coherence	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×
Consist.	\checkmark							
Indep.	×	×	\checkmark	\checkmark	\checkmark	×	×	\checkmark
Non-Equiv.	\checkmark	\checkmark	Х	×	\checkmark	×	×	\checkmark

b) Parameterized family of sample-based explainers

- use argumentation techniques
- guarantee coherence + other axioms
- integrate knowledge
- provide dialogical explanations

International Journals (12)

2 AIJ, J. of Approximate Reasoning, J. of Logic and Computation, ...

• International Conferences (53)

11 IJCAI, 7 AAMAS, 3 KR, 3 ECAI, 3 JELIA, 2 AAAI, TARK, ...