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Goals of the chair

Applications 

Data-driven
AI

To use advanced logics and argumentation models to explain predic-
tions of machine learning models.
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XAI
• ML models carry out predictions

• We want good predictions and know why the model made them
Why was the student’s application rejected?
What can the student do to change the situation?

• XAI approaches

  

  Black-box

Input Predictions
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Our work

Research questions
1) Which properties should be satisfied by an explanation function?
2) What are the different types of explanations?
3) How to persuade users by those explanations?
4) How to generate explanations in an efficient way?

Contributions
1) Axiomatic foundations of XAI
2) Formal analysis of various types of explanations
3) Dialogical explanations
4) Generation of abductive explanations
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1) Axiomatic foundations of XAI

a) Axioms: List of properties that an explainer should satisfy.
• clarify assumptions underlying an explainer
• shed light on weaknesses/strengths of an explainer
• compare different (family of) explainers

Notations
• E : a set of all partial assignments of values to features
• X : feature space (complete assignments or instances)
• C : a set of classes
• κ : X → C a classifier
• F : C → P(E) an explainer
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1) Axiomatic foundations of XAI (Cont.)

Let F be an explainer and x , x′ ∈ C

Success F(x) , ∅.
Non-Triviality ∀ L ∈ F(x), L , ∅.
Irreducibility ∀ L ∈ F(x) and ∀ t ∈ L , ∃ I ∈ X, L \ {t} ⊆ I.
Feasibility ∀ L ∈ F(x), ∃ I ∈ XTR(x) s.t. L ⊆ I.
Representativity ∀ I ∈ XTR(x), ∃L ∈ F(x) s.t. L ⊆ I.
Relevance ∀ L ∈ F(x) and ∀ t ∈ L , t is relevant to x.
Coreness ∀ L ∈ F(x) and ∀ t ∈ L , t is core to x.
Exhaustivity ∀ t ∈ LitT, if t is relevant to x, then ∃ L ∈ F(x), t ∈ L .
Completeness ∀ t ∈ LitT, if t is core to x, then ∃ L ∈ F(x), t ∈ L .
Coherence If x , x ′, then ∀ L ∈ F(x), ∀ L ′ ∈ F(x ′), L ∪ L ′ is inconsistent.
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1) Axiomatic foundations of XAI (Cont.)

Vacation Concert Meeting Exhibition Hiking
x1 0 0 1 0 0
x2 1 0 0 0 1
x3 0 0 1 1 0
x4 1 0 0 1 1
x5 0 1 1 0 0
x6 0 1 1 1 0
x7 1 1 0 1 1

• {(V ,0)} ∈ F(0)
• {(M,0)} ∈ F(1)

{(V ,0), (M,0)} is consistent⇒ ∃I ∈ X s.t. {(V ,0), (M,0)} ⊆ I

F violates Coherence
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1) Axiomatic foundations of XAI (Cont.)

b) Characterization: List of properties that uniquely defines a function

-
Under the whole feature space

  

  Sufficient reasons :
feature-values whose 
presence always leads to 
the prediction

Feasibility  
Representativity
Coherence

Irreducibility

duality

  Sufficient reasons 
for changing a prediction

Contrastive

Prime
Implicants

Duality
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1) Axiomatic foundations of XAI (Cont.)

b) Characterization: List of properties that uniquely defines a function

-
Under the whole feature space

  

  Necessary reasons :
feature-values whose 

absence always leads to 
avoid a prediction

Feasibility 
Relevance 
Coreness 
Completeness
Success
Representativity

  Necessary reasons 
for changing a prediction

Duality
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1) Axiomatic foundations of XAI (Cont.)

c) Impossibility result

• An explanation function which generates
prime implicants violates Coherence

Provides incorrect explanations
Limits of LIME, Anchors
Limits of (statistical) approaches

• No explainer can generate (a subset of)
prime implicants and guarantees both
existence (Success) and correctness
(Coherence) of explanations

-
Under a subset of the feature
space
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2) Formal analysis of various types of explanations

a) Modal logics for modelling explanations of classifier systems

(I) Logic of “white box” classifiers: complete knowledge of the classifier
Basic operators: Instance-quantifying modality □
Types of explanation modelled: abductive, contrastive, counterfactual

Prime implicant PImp(λ, x) =def □
(
λ→

(
t(x) ∧

∧
p∈Atm(λ)

⟨Atm(λ) \ {p}⟩¬t(x)
))

Abductive explanation AXp(λ, x) =def λ ∧ PImp(λ, x)

(II) Logic of “black box” classifiers: partial knowledge of the classifier
Extension: classifier-quantifying modality ■ (⇒ product modal logic)
Crucial distinction: Objective vs subjective explanation

Subjective abductive explanation SubAXp(λ, x) =def ■AXp(λ, x)

(III) Distance-based semantics for counterfactual conditionals: relativized
(�X , with X ⊆fin Var) and unrelativized (�)
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2) Formal analysis of various types of explanations

a) Modal logics for modelling explanations of classifier systems: Key results

• Complexity of satisfiability
“White box” “Black box”

Finite fixed prop. variables Polynomial Polynomial
Infinite prop. variables NP-complete EXPTIME-hard,

in NEXPTIME

• Proof theories

• “Inexpressibility” result for counterfactual conditionals:
In the infinite variable case, the language of unrelativized counterfac-
tual conditionals is not expressive enough to distinguish the concrete
distance-based from the abstract similarity-based semantics.
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2) Formal analysis of various types of explanations

b) Modals logics for causal reasoning

• Opening the box: classifier with internal layers/nodes ≈ causal model
• Languages with increasing expressiveness:

Causal necessity/possibility
Interventionist conditionals
Causal counterfactual conditionals

• Modelled notions: actual cause, causal explanation
• Conceptual contribution: novel rule-based semantics for causal reasoning
• Complexity results: satisfiability checking (ST) and model checking (MC)

ST and MC for causal necessity is NP-complete
MC for interventionist conditionals is in ∆P

2

• Algorithmic aspects: Reduction of MC to SAT and SAT-based algorithm
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3) Dialogical explanations

Rich logical language suitable for representing
• various types of explanations (abductive, contrastive, . . .)
• interactive explanations (multi-agent dynamic epistemic setting)

 
φ1 
φ2 
φ3 
…	
	

 
ψ1 
ψ2 
ψ3 
…	
	

Agent 1’s  
belief base 

Agent 2’s  
belief base 

 
f1 
f2 
f3 
…	
	

 
f1’ 
f2’ 
f3’ 
…	
	

Agent 1’s partial explanations 
of the classifier’s decision 

Information exchange 

inform(2,1,ψ2) 

inform(1,2,φ1) 

Agent 2’s partial explanations 
of the classifier’s decision 
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4) Generation of abductive explanations

A weak abductive explanation (wAXp) for κ(x) is E ∈ E s.t.
i) E ⊆ x ii) ∀y ∈ X s.t. E ⊆ y, κ(y) = κ(x)

An abductive explanation (AXp) is a subset-minimal wAXp.

.
There are often constraints on feature space

Integrity constraints{ non-feasible instances
Years of work < age
No two distinct students may have the same ID card value

Dependency constraints{ dependencies between assignments
Social security number→ surname
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4) Generation of abductive explanations (Cont.)

Superfluous explanations
• κ1(x) = ¬f1 f1 ∧ ¬f2 → ⊥
• x = ⟨(f1,0), (f2,0)⟩ κ1(x) = 1
• E1 = {(f1,0)} E2 = {(f2,0)}

Redundant explanations
• κ2(x) = f1 ∨ f2 f2 → f1
• x = ⟨(f1,1), (f2,1)⟩ κ2(x) = 1
• E1 = {(f1,1)} E2 = {(f2,1)}

Exponential number of explanations
• κ3(x) = fn fn ≡ (

∑n−1
i=1 fi ≥ ⌊n/2⌋)

• x = {(fi ,1) | i = 1, . . . ,n} κ3(x) = 1
• (n

k) AXp’s, where k = ⌊ n
2 ⌋: all size-k subsets of

{(fi ,1) | i = 1, . . . ,n − 1}

and {(fn,1)}
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4) Generation of abductive explanations (Cont.)

a) Three novel types of abductive explanations under constraints

A coverage-based PI-explanation of κ(x), with x ∈ F[C], is any E ∈ E s.t.
1) E ⊆ x,
2) ∀y ∈ F[C]. ((E ⊆ y)→ (κ(y) = κ(x))),
3) ∄E′ ∈ E s.t E′ satisfies 1) and 2) and strictly subsumes E in F[C].

Superfluous explanations
• κ1(x) = ¬f1 f1 ∧ ¬f2 → ⊥
• x = ⟨(f1,0), (f2,0)⟩
• E1 = {(f1,0)} ((((((hhhhhhE2 = {(f2,0)} (((((((((hhhhhhhhhE3 = {(f1,0), (f2,0)}
• covF[C](E2) = covF[C](E3) ⊂ covF[C](E1)
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4) Generation of abductive explanations (Cont.)

a) Three novel types of abductive explanations under constraints

Redundant explanations
• κ2(x) = f1 ∨ f2 f2 → f1
• x = ⟨(f1,1), (f2,1)⟩
• E1 = {(f1,1)} ((((((hhhhhhE2 = {(f2,1)} (((((((((hhhhhhhhhE3 = {(f1,1), (f2,1)}

Exponential number of explanations
• κ3(x) = fn fn ≡ (

∑n−1
i=1 fi ≥ ⌊n/2⌋)

• x = {(fi ,1) | i = 1, . . . ,n}
• The��@@(

n
k) AXp’s are discarded

• κ3(x) has a single CPI-Xp: {(fn,1)}
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4) Generation of abductive explanations (Cont.)

a) Three novel types of abductive explanations under constraints

Minimal coverage-based PI-explanation
A minimal coverage-based PI-explanation of κ(x) is a subset-minimal CPI-Xp
of κ(x).

Preferred coverage-based PI-explanation
A preferred coverage-based PI-explanation of κ(x) is a representative of the
set of miminal CPI-Xp’s of κ(x).
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4) Generation of abductive explanations (Cont.)

a) Three novel types of abductive explanations under constraints

Complexity Complexity
Explanation of testing of finding one

wAXp co-NP-complete polytime
AXp PNP FPNP

CPI-Xp ΠP
2 -complete FPΣP

2

mCPI-Xp ΠP
2 -complete FPΣP

2

pCPI-Xp ΠP
2 -complete FPΣP

2

FPL is the class of function problems that can be solved by a polynomial
number of calls to an oracle for the language L.
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4) Generation of abductive explanations (Cont.)

a) Three novel types of abductive explanations under constraints

T : a sample of feasible instances

dCPI-Xp
A dataset-based CPI of κ(x) is any E ∈ E such that:

1) E ⊆ x,
2) ∀y ∈ T . ((E ⊆ y)→ (κ(y) = κ(x))),
3) ∄E′ ∈ E s.t E′ satisfies 1) and 2) and strictly subsumes E in T .
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4) Generation of abductive explanations (Cont.)

Complexity Complexity
Explanation of testing of finding one

dwAXp P polytime
dAXp P polytime

dCPI-Xp P polytime
dmCPI-Xp P polytime
dpCPI-Xp P polytime

wAXp co-NP-complete polytime
AXp PNP FPNP

CPI-Xp ΠP
2 -complete FPΣP

2

mCPI-Xp ΠP
2 -complete FPΣP

2

pCPI-Xp ΠP
2 -complete FPΣP

2

FPL is the class of function problems that can be solved by a polynomial
number of calls to an oracle for the language L.
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4) Generation of abductive explanations (Cont.)

Properties satisfied by each type of explanation

wAXp AXp CPI-Xp mCPI-Xp pCPI-Xp dCPI-Xp dmCPI-Xp dpCPI-Xp
Success ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Non-Triv. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Irreduc. × ✓ × ✓ ✓ × ✓ ✓
Coherence ✓ ✓ ✓ ✓ ✓ × × ×

Consist. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Indep. × × ✓ ✓ ✓ × × ✓
Non-Equiv. ✓ ✓ × × ✓ × × ✓

23 / 25



24/25

4) Generation of abductive explanations (Cont.)

b) Parameterized family of sample-based explainers
• use argumentation techniques
• guarantee coherence + other axioms
• integrate knowledge
• provide dialogical explanations
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Publications (35 A*)

• International Journals (12)
2 AIJ, J. of Approximate Reasoning, J. of Logic and Computation, ...

• International Conferences (53)
11 IJCAI, 7 AAMAS, 3 KR, 3 ECAI, 3 JELIA, 2 AAAI, TARK, ...
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