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Game Theory and Al chair

Investigates possible applications of Game Theory concepts and methods to Al,
as well as the consequences of the presence of Al in human interactions.

Thematics include:

1.

N Ok wN

interactions between algorithms,

hybrid games (between algorithms and rational agents),

bandits and online learning,

decisions and use of information in complex strategic environments,
computation of equilibria in min-max problems,

zero-order global Lipschitz optimization,

approximation and certification

(~ 47 (pre-)publications, including Maths of Operations Research, Maths Programming, Operations Research,
Theoretical Economics, NeurlPS, ALT, EC, a reinforcement learning virtual school with 1500 participants, a book)
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1. Games played by Exponential Weights Algorithms

(M. d’Andrea, F. Gensbittel, J. Renault)

Machine learning algorithms for decision-making and prediction are mostly designed to
optimize the behavior of an agent facing an unknown environment.

As they are more and more widely used, they will widely interact in the future.

— Will these interactions lead somewhere ?

Focus here on Exponential Weights Algorithms, used in many domains and contexts.
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Exponential weights algorithm

Consider u : A x K — R giving the payoff of an agent when the environment is in state k.
Atstage t =0,1,2, ..., select an action a;, then observe the environment k; and get the
payoff u(a, k).

EW algorithm with fixed parameter n > 0:

e positive weights w;(a) > 0 for all a and ¢,

e at each stage play proportionally to the current weights,

e weights are initialized (typically wy(a) = 1 for all a) and updated by:

Wt+1(a) = Wt(a) eXp(nU(a, kt))

— No-regret: for all T, ko,...,k1_1,

1

1= 1= A 1
— > — - — = 2,
E <T > U(at7kt)> > max <T ;:0 U(avkt)> T 5 1lIull

t=0
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Model: Several EW algorithms interact

Base game: each player i = 1,..., N has a finite action set A; and receives payoffs
accordingto u; : A; x ... x Ay = R.

Behaviors: each player i uses a EW algo with parameter 7; > 0 and some initial weights.

Dynamics: at each stage t = 0, 1, .., each player i plays an action a! with proba
proportional to her current weights, then observes a' ; and updates her weights by:

Va;, W,'t+1(ai) = Wit(ai) exp(n;u;(a;, aii))'

Define the random variable of normalized weights p! = (M)%A, e A(A).

t
w;

(P") = ((p})ien) is @ Markov chain. What are its properties ?
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Proposition: Almost surely, (T,L) is played at all but finitely many stages, or (B,R) is played
at all but finitely many stages.

1. not true for all no-regret strategies.
2. generalizes to “strong coordination games”

Equilibria of Games with Algorithms ANITI
77 November 17, 203 HES



Weakly Stable Nash Equilibria

Define a Weakly Stable Nash Equilibrium as a NE p such that for each player i, for all a;, b;
in the support of p;, for all a_; in the support of p_;: uj(a;,a_;) = u;(b;,a_;).

L M R

T<(3,3) (0,0) (2,2)>
B\ (0,0) (3,3) (2,2)

2 strict NE: (T, L) and (B, M) and a continuum of other WSNE: (xT + (1 — x)B, R) with
1/3 < x<2/3.

Theorem 1: Assume (p') converges with positive probability to a random variable p*.
Then a.s. p* is a WSNE.

Corollary: no possible convergence in games without WSNE.
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Limit probability of playing a SNE

Define L! as the probability in [0, 1] to play a strict NE at period t + 1 given the present
history at period t.

Theorem 2: (L'); converges to a random variable with values in {0, 1}.

Illustrations:

L M R
T<(3,3)’ (0,0) (2,2)>
B\ (0,0) (3,3)° (2,2)

(B,L) TL)
(B,M)-
(B,R) (T.R)
9/17

(T.M)

By B, Bs
Al ( (070). (717*1) (131))
A2 (_17_1) (171) (LO)
Az \ (-1,-1) (1,0) (1,1)

With some proba in (0,1), the play CV to
the strict NE (A1, By). Otherwise, it will
eventually remain in {A;,As} x {By, B3}
and diverges.
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2. Optimistic Gradient DescentAscent in Bilinear Games

(E. de Montbrun, J. Renault)

We consider Minmax Optimization:

min sup g(X, y),
YeY xex

forg: X x Y — R. Many possibilities

Game-theoretic approach:

Consider the zero-sum game where simultaneously player 1 chooses x in X, player 2

chooses y in Y, and finally player 2 pays g(x, y) to player 1.
Look for a Nash equilibrium (or saddle-point), i.e. for (x*, y*) s.t.:
Vx e X,Vy €Y, gx,y") <g(x*,y*) < g(x*.,y)
— Then y* achieves minycy supycx 9(X, y).
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Example: Generative Adversarial Networks

Goal: simulate a distribution from high-dimensional data: sample elements that mimic the
observations (cats, old portraits, people faces,...)(Goodfellow et al. 2014)

Can be seen as a Min-Max Optimization problem or a game between a and a
Discriminator.

pdata()_(')
" Xeeal g
1
' D(X)
' > X ——— real?
\ Discriminator
= = \
pz(2) . GEZ) '\
Xfake b

latent noise

min max (Ex~p,,, 10g Do, (X) + Ezp, log(1 — Dg,(Gy,(2))))

g 0g
with Dy, (x) € [0,1] probability assigned by D that x is true.
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Gradient Descent-Ascents

Assuming g is “nice” and a saddle-point exists, how to find a saddle-point of g ?

o Difficult problem (“Non-Concave Games: a challenge for Game Theory’s next 100
years”, Daskalakis 2022).

o Natural to look at Gradient Descent-Ascents: given n > 0, iterate:
Xtt1 = Xt + N7 (Xt7Yt)
Yirr = Nt — Ny J (Xt V)
Does not always converge.
e — We consider Optimistic Gradient Descent-Ascents
Xty1 = Xt + 2778 (xt, yt)— af(Xt 1, Yt-1)
Ytr1 = Yt — 27Iay (Xt7Yt)+n7g(xt—1ayt—1)

Optimistic Gradient Descent Ascent
on Matching
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For the presentation: simple unconstrained bilinear case

g(x,y) = x"Ay,

for some A € R"*P, with x € R", y € RP.
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OGDA for zero-sum games

Theorem 1: Write piya, = max{u, 1 € Sp(AAT)} and pimin = min{u > 0, 1 € Sp(AAT)}.

NIF0o<n< \/7 then (x:, yt): CV to the Nash equilibrium (Xo, Yoo ), Where

- prOJKer(AT) (XO) and Yoo = projﬁer(A) (yO)
The CV is exponential, and we compute the exact rate A(n).

2) We compute the optimal 7, and the corresponding rate A* in [?, 1) as a function of
Hmax and Hmin -

(Improvement on the litterature)
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OGDA for general-sum games

We introduce OGDA for the general-sum game (x" Ay, x” By):

{XH-I = Xt + 2nAyt — nAYt1
Yier = Y+ 2nBxy —nBxi_1

Theorem 2:
e CV of OGDA may fail in the general-sum context
¢ “Nice” sufficient conditions for convergence

e Coordination in a “large” class of games: either (x;, y¢): CV to a Nash equilibrium, or both
payoffs x[ Ay; and x/ By; CV to +oo

Theorem: Let A, B be in R"<P with Sp(BTA) C R. Letn € (0, W%)’ with pmax the largest eigenvalue of

BTA. Assume BT A is diagonalizable, Ker(A) @ Im(B") = CP and Ker(B") @ Im(A) = C". Then either (x;, ;)
CV to a Nash equilibrium, or both payoffs x] Ay; and x[ By; CV to +oo.
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Back to the MinSup problem: min, sup, X" Ay

Option 1: Run OGDA for the zero-sum game for some step-size 7, with a CV rate of A(n).

Option 2: Optimize the step-size 1 to get a rate \* = \/é (1 +4/1— g) € [%, 1), better

when

Option 3: Run OGDA for the general-sum game (x” Ay, x" By) with B = —(A*)7, and
. Theorem 3: Then (y;); converges to the same limit, with exponential rate arbitrarily

n=3

min{u>0,u€Sp(ATA)}

max{u,u€Sp(ATA)}

is large.

close to the optimal value %

16/17

Log of the distance to the Nash equilibrium

e (A AL N=172

~= (A = A\ n=0.5608

— (A -A) =12

) 200

400
Numbs
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Going further: extension to polynomial games

Assume g(x,y) = 1 (x)TAg(y), with 1), ¢ smooth. We can run the general-sum extension
of OGDA on the game with payoffs g; = g and g2(x,y) = —z/)(x)T(A+)T¢(y).

Example : g(x,y) = —2x? + 1y? + xy, with X, y € R. Here ¢(x) = (—x2,x,1)7,
0 0 2
0 1 O) . Then go(x,y) = 0.5x> — 3y? — xy. NE = {(0,0)}
100

3

o(y) = (y%y,1)T and A= (

in both games.

— Running OGDA on an appropriate general-sum game improves the CV to equilibria of a
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