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Game Theory and AI chair

Investigates possible applications of Game Theory concepts and methods to AI,

as well as the consequences of the presence of AI in human interactions.

Thematics include:

1. interactions between algorithms,

2. hybrid games (between algorithms and rational agents),

3. bandits and online learning,

4. decisions and use of information in complex strategic environments,

5. computation of equilibria in min-max problems,

6. zero-order global Lipschitz optimization,

7. approximation and certification

(∼ 47 (pre-)publications, including Maths of Operations Research, Maths Programming, Operations Research,

Theoretical Economics, NeurIPS, ALT, EC, a reinforcement learning virtual school with 1500 participants, a book)
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1. Games played by Exponential Weights Algorithms

(M. d’Andrea, F. Gensbittel, J. Renault)

Machine learning algorithms for decision-making and prediction are mostly designed to

optimize the behavior of an agent facing an unknown environment.

As they are more and more widely used, they will widely interact in the future.

→ Will these interactions lead somewhere ?

Focus here on Exponential Weights Algorithms, used in many domains and contexts.
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Exponential weights algorithm

Consider u : A× K → R giving the payoff of an agent when the environment is in state k.

At stage t = 0, 1, 2, ..., select an action at , then observe the environment kt and get the

payoff u(at , kt).

EW algorithm with fixed parameter η > 0:
• positive weights wt(a) > 0 for all a and t,

• at each stage play proportionally to the current weights,

• weights are initialized (typically w0(a) = 1 for all a) and updated by:

wt+1(a) = wt(a) exp(ηu(a, kt)).

→ No-regret: for all T , k0,...,kT−1,

E

(
1

T

T−1∑
t=0

u(at , kt)

)
≥ max

a

(
1

T

T−1∑
t=0

u(a, kt)

)
− ln |A|

ηT
− 1

2
η‖u‖2.
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Model: Several EW algorithms interact

Base game: each player i = 1, ...,N has a finite action set Ai and receives payoffs

according to ui : A1 × ...× AN → R.

Behaviors: each player i uses a EW algo with parameter ηi > 0 and some initial weights.

Dynamics: at each stage t = 0, 1, .., each player i plays an action ati with proba

proportional to her current weights, then observes at−i and updates her weights by:

∀ai , w t+1
i (ai) = w t

i (ai) exp(ηiui(ai ,at−i)).

Define the random variable of normalized weights pti = (
w t
i (ai)

w t
i

)ai∈Ai
∈ ∆(Ai).

(pt) = ((pti )i∈N) is a Markov chain. What are its properties ?
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Example

L R

T

B

(
(1, 1) (0, 0)
(0, 0) (1, 1)

)

Proposition: Almost surely, (T,L) is played at all but finitely many stages, or (B,R) is played

at all but finitely many stages.

1. not true for all no-regret strategies.

2. generalizes to “strong coordination games”
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Weakly Stable Nash Equilibria

Define a Weakly Stable Nash Equilibrium as a NE p such that for each player i, for all ai , bi
in the support of pi , for all a−i in the support of p−i : ui(ai ,a−i) = ui(bi ,a−i).

( L M R

T (3, 3) (0, 0) (2, 2)
B (0, 0) (3, 3) (2, 2)

)
2 strict NE: (T ,L) and (B,M) and a continuum of other WSNE: (xT + (1− x)B,R) with
1/3 ≤ x ≤ 2/3.

Theorem 1: Assume (pt) converges with positive probability to a random variable p∗.

Then a.s. p∗ is a WSNE.

Corollary: no possible convergence in games without WSNE.
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Limit probability of playing a SNE

Define Lt as the probability in [0, 1] to play a strict NE at period t + 1 given the present

history at period t.

Theorem 2: (Lt)t converges to a random variable with values in {0, 1}.

Illustrations:

( L M R

T (3, 3)• (0, 0) (2, 2)
B (0, 0) (3, 3)• (2, 2)

)

(B,R)

(B,M)

(B,L)

(T,R)

(T,M)

(T,L)


B1 B2 B3

A1 (0, 0)• (−1,−1) (−1,−1)
A2 (−1,−1) (1, 1) (1, 0)
A3 (−1,−1) (1, 0) (1, 1)


With some proba in (0, 1), the play CV to

the strict NE (A1,B1). Otherwise, it will
eventually remain in {A2,A3} × {B2,B3}
and diverges.
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2. Optimistic Gradient DescentAscent in Bilinear Games

(E. de Montbrun, J. Renault)

We consider Minmax Optimization:

min
y∈Y

sup
x∈X

g(x, y),

for g : X × Y → R. Many possibilities

Game-theoretic approach:

Consider the zero-sum game where simultaneously player 1 chooses x in X , player 2

chooses y in Y , and finally player 2 pays g(x, y) to player 1.

Look for a Nash equilibrium (or saddle-point), i.e. for (x∗, y∗) s.t.:

∀x ∈ X ,∀y ∈ Y , g(x, y∗) ≤ g(x∗, y∗) ≤ g(x∗, y)

→ Then y∗ achieves miny∈Y supx∈X g(x, y).
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Example: Generative Adversarial Networks

Goal: simulate a distribution from high-dimensional data: sample elements that mimic the

observations (cats, old portraits, people faces,...)(Goodfellow et al. 2014)

Can be seen as a Min-Max Optimization problem or a game between a Generator and a

Discriminator.

~z ~xfake
G(~z)

Generator

pZ(~z)

latent noise

~xreal
pdata(~x)

~x real?
D(~x)

Discriminator

min
θg

max
θd

(
Ex∼pdata logDθd (x) + Ez∼pZ log(1− Dθd (Gθg(z)))

)
with Dθd (x) ∈ [0, 1] probability assigned by D that x is true.
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Gradient Descent-Ascents

Assuming g is “nice” and a saddle-point exists, how to find a saddle-point of g ?

• Difficult problem (“Non-Concave Games: a challenge for Game Theory’s next 100

years”, Daskalakis 2022).

• Natural to look at Gradient Descent-Ascents: given η > 0, iterate:{
xt+1 = xt + η ∂g

∂x (xt , yt)

yt+1 = yt − η ∂g
∂y (xt , yt)

Does not always converge.

• → We consider Optimistic Gradient Descent-Ascents{
xt+1 = xt + 2η ∂g

∂x (xt , yt)−η
∂g
∂x (xt−1, yt−1)

yt+1 = yt − 2η ∂g
∂y (xt , yt)+η

∂g
∂y (xt−1, yt−1)
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For the presentation: simple unconstrained bilinear case

g(x, y) = xTAy,

for some A ∈ Rn×p, with x ∈ Rn, y ∈ Rp.
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OGDA for zero-sum games

Theorem 1: Write µmax = max{µ, µ ∈ Sp(AAT )} and µmin = min{µ > 0, µ ∈ Sp(AAT )}.

1) If 0 < η < 1√
3µmax

, then (xt , yt)t CV to the Nash equilibrium (x∞, y∞), where

x∞ = proj⊥Ker(AT )(x0) and y∞ = proj⊥Ker(A)(y0)

The CV is exponential, and we compute the exact rate λ(η).

2) We compute the optimal η, and the corresponding rate λ∗ in [
√
2
2 , 1) as a function of

µmax and µmin.

(Improvement on the litterature)
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OGDA for general-sum games

We introduce OGDA for the general-sum game (xTAy, xTBy):{
xt+1 = xt + 2ηAyt − ηAyt−1

yt+1 = yt + 2ηBxt − ηBxt−1

Theorem 2:

• CV of OGDAmay fail in the general-sum context

• “Nice” sufficient conditions for convergence
• Coordination in a “large” class of games: either (xt , yt)t CV to a Nash equilibrium, or both

payoffs xTt Ayt and xTt Byt CV to +∞

Theorem: Let A,B be in Rn×p with Sp(BTA) ⊂ R. Let η ∈ (0, 1
2
√
µmax

), with µmax the largest eigenvalue of

BTA. Assume BTA is diagonalizable, Ker(A)⊕ Im(BT ) = Cp and Ker(BT )⊕ Im(A) = Cn. Then either (xt , yt)t
CV to a Nash equilibrium, or both payoffs xT

t
Ayt and xT

t
Byt CV to +∞.

Equilibria of Games with Algorithms

15/17 November 17, 203



Back to the MinSup problem: miny supx xTAy
Option 1: Run OGDA for the zero-sum game for some step-size η, with a CV rate of λ(η).

Option 2: Optimize the step-size η to get a rate λ? =

√
1
2

(
1 +

√
1− β

8

)
∈ [

√
2
2 , 1), better

when
min{µ>0,µ∈Sp(ATA)}

max{µ,µ∈Sp(ATA)} is large.

Option 3: Run OGDA for the general-sum game (xTAy, xTBy) with B = −(A+)T , and
η = 1

2 . Theorem 3: Then (yt)t converges to the same limit, with exponential rate arbitrarily

close to the optimal value
√
2
2 .

.
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Going further: extension to polynomial games

Assume g(x, y) = ψ(x)TAφ(y), with ψ, φ smooth. We can run the general-sum extension

of OGDA on the game with payoffs g1 = g and g2(x, y) = −ψ(x)T (A+)
T
φ(y).

Example : g(x, y) = −2x2 + 1
3y

2 + xy, with x, y ∈ R. Here ψ(x) = (−x2, x, 1)T ,

φ(y) = (y2, y, 1)T and A =

0 0 2
0 1 0
1
3 0 0

. Then g2(x, y) = 0.5x2 − 3y2 − xy. NE = {(0, 0)}

in both games.

→ Running OGDA on an appropriate general-sum game improves the CV to equilibria of a
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