Certifiable and efficient implementation of machine learning algorithms on avionics systems

ANITI Days – November 17 2023
Iryna De Albuquerque Silva, Claire Pagetti, Thomas Carle, Adrien Gauffriau
Work scope

• Implementation of **off-line trained feed-forward deep neural networks** in avionics systems;

![Diagram]

- Target dataset
- Configuration, training and optimization
- Trained and optimized model
- Hardware target
- Embedded function

Certification requirements (subset of DO-178C):
• Ensure traceability (formal description of the function + semantics preservation);
• Compute tight WCET (restrictions on software and hardware)

Embedded targets:
• Attain good performance in single-core platforms

• Bridge the gap between ML and avionics domains
Certifiable and efficient implementation of machine learning algorithms on avionics systems

Contribution: Development of ACETONE

- **ACETONE**: Avionics C code generator for Neural Networks
 - Generated code: preserves the semantics and is predictable

Real use cases:
- ACAS-Xu
- Lenet
- Alexnet
- AudioNet

Evaluated w.r.t SOTA:
- Keras2C
- uTVM

- Compatible with avionics requirements but convolutional layers were not really efficient...
Improved implementation of convolutional layers

- **Idea:** reduce convolutional layers *execution time* by implementing it as a matrix multiplication (GEMM) → GEMM-based convolution
Improved implementation of convolutional layers

- **Idea:** reduce convolutional layers *execution time* by implementing it as a matrix multiplication (GEMM) → GEMM-based convolution

- **Contribution:** compliant C code for several variants (transposed matrices, indirect access)
- **Result:** MET reduced by 50% on average
Architecture-aware GEMM implementation

- **Idea:** take into account hardware specifics (number of vector registers and size of caches)
Efficient blocked GEMM implementation

- **Idea:** take into account hardware specifics (number of vector registers and size of caches) → blocked matrix multiplication

\[C = A \cdot B \]

- **Contribution:** vectorized implementation without compiler optimizations

- **Result:** MET reduced by 98% on average
Efficient and predictable blocked GEMM implementation

- **Idea:** bound cache misses and tighten the WCET estimation

\[C = A \cdot B \]

- **Contribution:** analytical formulae to tune GEMM blocking parameters
- **Result:** cache misses reduced up to 60%

\[C_r = a_r \cdot b_r \]
Efficient and predictable blocked GEMM implementation

- **Idea:** bound cache misses and tighten the WCET estimation

![Diagram showing matrix multiplication and cache memory organization.](image)

- **Contribution:** analytical formulae to tune GEMM blocking parameters
- **Result:** cache misses reduced up to 60%
Efficient and predictable blocked GEMM implementation

- **Idea:** bound cache misses and tighten the WCET estimation

- **Contribution:** analytical formulae to tune GEMM blocking parameters
- **Result:** cache misses reduced up to 60%
Conclusions

Automatic generation of functionally equivalent and time-predictable C code from feed-forward neural networks;

Efficient implementation for a given target

Competitive with the state of the art with respect to the defined criteria (semantic preservation, WCET, measured execution time, memory layout)

Perspectives:
• Cover a wider range of inference models architectures;
• Extend automatic optimized code generation for different hardware targets.
Thank you for your attention.
Looking forward to your questions!

✉️ iryna.de_albuquerque_silva@onera.fr