Neuroadaptive technology for Human Machine Teaming

16 Nov. 2023
Contributions from PhD theses of X. XU & G. ANGELOTTI

- “In search of invariants in varying electroencephalography signals for brain-computer interfaces”
defended by Xiaoqi XU on January 27th 2023.

- “Advances in Risk-Aware Offline Reinforcement Learning: A Study of Data Augmentation, Explainability, and Policy Selection”
defended by Giorgio ANGELOTTI on June 12th 2023.
Context and Contributions

Context
How to improve Human-Machine Interaction (HMI) offline? (i.e. from previously collected data?)

Data collection with Human in the Loop is expensive
→ Lack of HMI data
→ Data (inter-subject) variability *(cf. presentation X.Xu)*

Contributions in Offline Reinforcement Learning (ORL):
- Data augmentation
- Risk-aware Policy selection
- Application to HMI
Offline Reinforcement Learning

- No interaction to explore (no trial and error)
- Learns from a data set of experiences
- Possibly become better than the recorded agent

Levine et al.
Challenges

- **Vanilla Temporal Difference algorithms not good without exploration**

\[
\frac{\delta Q^*_i(s_t, a_t)}{\delta i} \approx \frac{Q^*_{i+1}(s_t, a_t) - Q^*_i(s_t, a_t)}{\alpha_i} = r_t + \gamma \max_{a} Q^*_i(s_{t+1}, a) - Q^*_i(s_t, a_t)
\]

Optimistic in front of Uncertainty

Figure 2.4: Taken from the presentation of Kumar, Fu et al. (2019) at NeurIPS 2019. Q-function
Works

Angelotti, Drougard, Chanel
Offline Learning for Planning: A Summary
(2020) Proceedings of the 1st Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning at the ICAPS

Angelotti, Drougard, Chanel
Expert-guided Symmetry Detection in MDPs
(2022) Proceedings of the 14th International Conference on Agents and Artificial Intelligence

Angelotti, Drougard, Chanel
Data Augmentation Through Expert-Guided Symmetry Detection to Improve Performance in Offline Reinforcement Learning
(2023) Proceedings of the 15th International Conference on Agents and Artificial Intelligence

Angelotti, et al.
Our method applied to HMI
Submitted to an International Conference

Angelotti, Diaz Rodriguez
Towards a more efficient computation of individual attribute and policy contribution for post-hoc explanation of cooperative multi-agent systems using Myerson values
(2023) Elsevier’s Knowledge-Based Systems

Review of the literature of offline learning (missing at the time)

Can we improve the data efficiency of algorithms in the offline context?
Validation of expert proposed symmetries

How to select a deterministic risk-sensitive policy between many?
Robust offline policy selection with the Bayesian formalism

Can we apply these methods to Human-Computer Interaction with Physiological computing?
Robust application to Firefighter Robot use case

Explainability for Multi-Agent Systems
Contribution:

Check if an alleged symmetry k is valid and use the resulting knowledge for data augmenting.

Estimate transitions → Transform data with k → Evaluate probabilities

$\nu_k > \nu?$ → Augment or not D

proportional to the size of the intersection!
\[U^\pi = \mathbb{E}_{s \sim \rho}[V^\pi(s)] \quad \Delta U = U^{\hat{\pi}_k} - U^{\hat{\pi}} \]
II Risk-aware Policy selection

Contribution:
A method to offline evaluate and select deterministic policies in a risk-sensitive way technique to do so for small finite states and actions MDPs.

![Diagram showing risk-sensitive metrics](image)

- **Exploitation vs Caution – step 1**
 - Data Set
 - Define Bayesian Prior Distribution on Model Uncertainty
 - Posterior Distribution on Model Uncertainty
II Risk-aware Policy selection

Exploitation vs Caution – step 2

Estimate the same value for every different policy in the candidate set, \(\{\text{Policy}_1, \ldots, \text{Policy}_n\} \)

then select the one that maximizes the Risk-sensitive metric!

Reiterate until the estimate has the wanted statistical significance
Environments
II Risk-aware Policy selection

Results

(< 10 states, < 10 actions)

Ring: NORBU ✔️, EvC ✔️

Chain: No best method

Usage of trivial policy increases with batch size
Application to Mixed-Initiative Human-Robot Interaction

- Human Supervision
- Dangerous consequences of bad policies
- Limited previously collected data set
- Partial observability
Application: Offline RL with Human-in-The-Loop and Physiological Computing
What is missing? A method to include model uncertainty for learned POMDPs and to compute a robust policy.

Contribution: technique to do so, specific to the application to our use case.

Classifier confusion matrix: Dirichlet Prior for POMDP Observation

SOLVE ROBUSTLY THE POMDP AND THE MDP TAKING INTO ACCOUNT MODEL UNCERTAINTY
Evaluate the mixed-initiative interaction policy

compare following policies:

1. **Data collector policy (Random)**
2. **Full automatic policy**
3. **MDP adaptive strategy** with physiological and behavioural data
4. **POMDP adaptive strategy** with physiological and behavioural data
III Application to HMI

<table>
<thead>
<tr>
<th>Policy</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random (D)</td>
<td>22.1</td>
<td>10.0</td>
<td>1.0</td>
<td>12.8</td>
<td>26.5</td>
<td>29.3</td>
<td>36.0</td>
</tr>
<tr>
<td>Random (D_{val})</td>
<td>17.9</td>
<td>9.6</td>
<td>4.0</td>
<td>8.3</td>
<td>20.0</td>
<td>26.8</td>
<td>32.0</td>
</tr>
<tr>
<td>MDP (D_{val})</td>
<td>22.7</td>
<td>7.6</td>
<td>6.0</td>
<td>18.0</td>
<td>22.5</td>
<td>28.8</td>
<td>39.0</td>
</tr>
<tr>
<td>POMDP (D_{val})</td>
<td>23.4</td>
<td>5.7</td>
<td>14.0</td>
<td>18.5</td>
<td>24.0</td>
<td>27.5</td>
<td>37.0</td>
</tr>
<tr>
<td>FA (D_{val})</td>
<td>25.6</td>
<td>5.0</td>
<td>9.0</td>
<td>25.3</td>
<td>27.0</td>
<td>28.0</td>
<td>32.0</td>
</tr>
</tbody>
</table>
Belief of performance

Spearman’s $\rho = 0.325$

$p(\beta)$-value < 0.001
Offline Reinforcement Learning could improve Human Machine Interaction.

Teaming up better with people,

by better understanding their state.

→ EEG-based Brain Computer Interface!
Context and Contributions

Context:

How to design a classifier for BCI that tackles inter-subject EEG variability?

Contributions:

- Laplacian (spatial)
- Path signature (temporal)
- Topological data analysis (spatio-temporal)
EEG varies between sessions and subjects

EEG variability

<table>
<thead>
<tr>
<th>Internal</th>
<th>Macroscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellular noise</td>
<td>environmental noise</td>
</tr>
<tr>
<td>electrical noise</td>
<td>task</td>
</tr>
<tr>
<td>synaptic noise</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microscopic</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gibson, E., Lobaugh, N. J., Joordens, S., & McIntosh, A. R. (2022)</td>
</tr>
</tbody>
</table>

Masquelier, T. (2013)
Scrivener, C. L. & Reader, A. T. (2022)
Solutions

Transfer learning

Adaptive waveform learning

Model the neural events through adaptive kernels

Objectif: robust features against inter-subject variability

- Laplacian: hierarchical representation that encodes the intrinsic geometry
- Path signature: invariant under time reparametrization and captures order
- TDA: extracts topological properties of the attractor of EEG dynamics
• X. Xu, N. Drougard, R. N. Roy (2021). Dimensionality Reduction via the Laplace-Beltrami Operator: Application to EEG-based BCI, *IEEE EMBS Conf. NER*

• X. Xu, D. Lee, N. Drougard, R. N. Roy (accepted for publication in Scientific Reports). Signature methods for brain-computer interfaces. Preprint available at Research Square [https://doi.org/10.21203/rs.3.rs-2476159/v1]

• X. Xu, N. Drougard, R. N. Roy (to be submitted). Tackling inter-subject variability in brain-computer interface via topological data analysis.
Data availability:

All of the datasets analysed during the thesis are publicly available. The links for download:

- *BCI competition IV 2a dataset*: https://www.bbci.de/competition/iv/
- *Physionet motor imagery dataset*: https://physionet.org/content/eegmmidb/1.0.0/
- *Passive BCI competition dataset*: https://zenodo.org/record/4917218#.Y8pgFKfMI5k

Code availability:

Code of these methods can be found on github:

- *Path signature*: https://github.com/XiaoqiXu77/Signature_BCI
- *TDA*: https://github.com/XiaoqiXu77/TDA_BCI
Path signature

- Originated in pure math to solve stochastic differential equations
- Borrowed by machine learning community as a feature map for time series (e.g. handwritten character recognition, diagnosis of bipolar disorder etc.)
- Never used for BCI

Path signature

Path $X_t : [a, b] \rightarrow \mathbb{R}^d$

Signature $S(X)_{a,b} = (1, S(X)_{a,b}^1, \ldots, S(X)_{a,b}^n, S(X)_{a,b}^{1,1}, S(X)_{a,b}^{1,2}, \ldots)$

level 1

level 2

$S(X)^i_{a,b} = \int_a^b dX_t^i = X_b^i - X_a^i = \Delta X^i$

$S(X)_{a,b}^{i_1,\ldots,i_k} := \int_{a<t<b} S(X)_{a,t}^{i_1,\ldots,i_{k-1}} dX_t^{i_k}$

$= \int_{a<t_k<b} \int_{a<t_{k-1}<t_k} \ldots \int_{a<t_1<t_2} \int_a^{i_1} dX_{t_1}^{i_1} dX_{t_2}^{i_2} \ldots dX_{t_k}^{i_k}$
Path signature

Path \(X_t : [a, b] \rightarrow \mathbb{R}^d \) → Signature \(S(X)_{a, b} = (1, S(X)^1_{a, b}, \ldots, S(X)^n_{a, b}, S(X)^{1,1}_{a, b}, S(X)^{1,2}_{a, b}, \ldots) \)

level 1

level 2

(a) \(S(X)^{1,2}_{a, b} \)
(b) \(S(X)^{2,1}_{a, b} \)
(c) \(\frac{1}{2}(S(X)^{1,2}_{a, b} - S(X)^{2,1}_{a, b}) \) → lead matrix
Properties

- It fully characterizes paths up to tree-like equivalence (paths which retrace themselves along some subsection)
- Any continuous classification boundary in the path space can be approximated by a linear boundary in the signature space
- Can be efficiently computed, and used in an online setting
- Invariant under translation and time reparametrization
Application on BCI
Results

Features: study of truncation levels

<table>
<thead>
<tr>
<th></th>
<th>level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>intra</td>
<td>SVM</td>
<td>50.5(12.9)</td>
<td>66.1(15.2)</td>
<td>55.7(13.3)</td>
<td>36.9(13.9)</td>
</tr>
<tr>
<td></td>
<td>LDA</td>
<td>51.0(12.6)</td>
<td>63.4(14.0)</td>
<td>54.7(14.2)</td>
<td>54.6(14.2)</td>
</tr>
<tr>
<td></td>
<td>LR</td>
<td>50.9(11.3)</td>
<td>67.1(13.5)</td>
<td>56.0(13.3)</td>
<td>56.6(14.0)</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>49.7(11.6)</td>
<td>59.7(16.1)</td>
<td>58.2(16.8)</td>
<td>36.6(18.0)</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>52.3(11.2)</td>
<td>61.6(16.4)</td>
<td>54.8(13.3)</td>
<td>56.8(15.1)</td>
</tr>
<tr>
<td>inter</td>
<td>SVM</td>
<td>52.6(3.6)</td>
<td>53.9(6.1)</td>
<td>44.2(6.2)</td>
<td>52.8(4.9)</td>
</tr>
<tr>
<td></td>
<td>LDA</td>
<td>52.5(4.9)</td>
<td>53.5(6.2)</td>
<td>53.1(4.9)</td>
<td>53.9(6.6)</td>
</tr>
<tr>
<td></td>
<td>LR</td>
<td>53.5(4.4)</td>
<td>54.7(5.8)</td>
<td>54.4(6.4)</td>
<td>53.6(4.9)</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>51.0(4.5)</td>
<td>54.6(6.6)</td>
<td>54.2(7.8)</td>
<td>52.0(4.6)</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>53.1(5.6)</td>
<td>58.7(8.3)</td>
<td>56.3(5.2)</td>
<td>52.2(5.7)</td>
</tr>
</tbody>
</table>

- The lead-lag relationship captured by the level 2 signature seems to be relevant with the underlying neural mechanisms.
Application on BCI
Results

<table>
<thead>
<tr>
<th></th>
<th>#channels</th>
<th>#classes</th>
<th>Signature (intra)</th>
<th>Signature (inter)</th>
<th>Covariance (intra)</th>
<th>Covariance (inter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCI Competition IV 2a</td>
<td>22</td>
<td>2</td>
<td>71.4 (18.1)</td>
<td>66.1 (11.8)</td>
<td>81.1 (16.6)</td>
<td>69.2 (15.9)</td>
</tr>
<tr>
<td>Physionet MI-BCI</td>
<td>64</td>
<td>2</td>
<td>60.1 (23.9)</td>
<td>47.0 (11.0)</td>
<td>63.8 (24.2)</td>
<td>46.2 (14.8)</td>
</tr>
<tr>
<td>Passive BCI competition</td>
<td>61</td>
<td>3</td>
<td>88.9 (10.5)</td>
<td>41.4 (7.4)</td>
<td>90.9 (9.3)</td>
<td>42.0 (5.6)</td>
</tr>
<tr>
<td>BCI Competition IV 2a</td>
<td>22</td>
<td>2</td>
<td>71.4 (18.1)</td>
<td>66.1 (11.8)</td>
<td>81.1 (16.6)</td>
<td>69.2 (15.9)</td>
</tr>
<tr>
<td>Physionet MI-BCI</td>
<td>22</td>
<td>2</td>
<td>58.2 (24.5)</td>
<td>51.6 (12.4)</td>
<td>64.1 (24.7)</td>
<td>51.5 (16.0)</td>
</tr>
<tr>
<td>Passive BCI competition</td>
<td>21</td>
<td>3</td>
<td>58.0 (17.7)</td>
<td>39.7 (6.1)</td>
<td>71.2 (15.9)</td>
<td>36.9 (5.4)</td>
</tr>
</tbody>
</table>

- The signature-based matrices are more robust to inter-subject variability than covariance matrices, especially on noisy and low-quality data.

Xiaoqi Xu, Darrick Lee, Nicolas Drougard, Raphaëlle N. Roy (2023). Signature methods for brain-computer interfaces. Accepted for publication in Scientific Reports.