
CertifAI: certification
of ML-based systems

16/11/2023

CertifAI chair
16/11/2023

Members of the chair

2

ONERA

Claire Kevin Charles

Pagetti Delmas Lesire

(COVNI) (RIME) (SEAS)

LAAS

Jérémie

Guiochet

IRIT

Thomas

Carle

Airbus

Mélanie Adrien

Ducoffe Gauffriau

(plan de relance) (MAD)

CS

Mohammed

Belcaid (MAD)

Thésards ANITI

Iryna Iban Noémie Anthony

De Albuquerque Guinebert Cohen Faure-Gignoux

Post doc ANITI

Joris Guérin

(2020 – 2022) now CR @IRD

Stagiaires
M1/M2

9

Lightening talks

CertifAI chair
16/11/20233

Scope – certification

Certification
§ evaluation of an argumentation, to convince that a system (i.e., its architecture, its settings,

including mitigation means. . .) is compliant with the regulatory requirements
§ accepted mean of compliance with the requirements is to rely on mature standards

Applicative scope:
§ ML (Machine Learning) based systems

Active contribution to
§ DEEL mission certif
§ EUROCAE/FAA ED 324 / ARP 6983 (more particularly on the implementation section)

ARP 4754

ARP 6983

ML-based
system

DO 178DO 254

ARP 4754

System
requirements

System
architecture

Item
requirements

DO 178 C SW /
DO 254 HW

Item specification
and requirements

Item
implementation
and verification

System
integration /
verification

ARP6983

ODD definition

Data Management

Model design

Item allocation and
requirements

Per item

Model verification
and mitigation means

Verification and validation
of implemented model

Focus of the chair
General objective: End-to-
end development process
to achieve the expected
level of performances and
provide some of the
evidences required by
certification.

CertifAI chair
16/11/2023

Outline & contributions

1. Use cases
1. Academic ACAS Xu
2. Academic UAV emergency landing
3. VBL (vision-based landing)
- with LARD open source
4. DDT (drone detection tracking)
proprietary

Semantic
ML model description in formal format

Trained ML model
System and Safety

Requirements

3. Runtime
verification

4. Implementation
Efficient and predictable code generation

CPU
Vector

extension

L1DL1I

L2

bus

DDR

2. Formal verification
Compliance with the requirements

3 targets: ARM v7 + NEON NVIDIA Xavier AGX HW accelerator: LeNet 5 streaming architecture
conv1

pool1

conv2

pool2

FC1

seq1

FC2

seq2

FC

x +

MAC

1. ODD definition

CertifAI chair
16/11/2023

State of the intruder relative to ownship

Avoidance Collision System for vertical
and horizontal cooperative and non-
cooperative avoidance (Multi-Intruders)

Intended function "the intruder should
not enter in the ownship envelope”

ODD: pre-defined ranges of inputs
- Initially based on look-up tables

(LUT)
- Replacing the LUT by neural

networks proposed by Standford
- Interest: Gain in memory

footprint (from 4Go to 3Mo)
ANITI focus:

§ Formal verification
§ Hybrid architecture definition

(safety net as a backup when
the NNs do not replicate well
the LUT)

§ Implementation

5

ACAS Xu

Decision
algorithm

Clear of Conflict (CoC)
Weak Left (WL)
Weak Right (WR)
Strong Left (SL)
Strong Right (SR)

r
q
y
vint
vown
t

45 NN (fully connected NN with 6
layers of 50 neurons each)

CertifAI chair
16/11/20236

UAV emergency landing

Intended function: identify a landing zone in urban environment ensuring a safe emergency landing. If no suitable landing is
found, the flight is aborted.
ANITI focus:

§ Runtime verification

CertifAI chair
16/11/2023

Intended function: computing the position of the aircraft from the position of the runway within an image taken during the
approach and landing phases of an aircraft.
ANITI focus:

§ Dataset design
§ ODD definition
§ Formal verification
§ Implementation

7

VBL (vision-based landing)

Aircraft pose estimation

Input
image

Runway detection Precise feature detection

Cropped
image

Runway
features

Aircraft location
wrt runway

Stage 1 Stage 2 Stage 3

Object detection (OD) Feature regression Pose estimation

CertifAI chair
16/11/2023

§ Training dataset
- Google Earth Studio and Microsoft

Flight Simulator synthetic images of
33 runways

§ Test dataset

- synthetic images of 79 runways
- real footage of 38 runways

Collaboration with DEEL mission certif

8

LARD – Landing Approach Runway Detection – Dataset

Tarbes: Comparison of a real landing footage (left) with synthetic
replicas (Google Earth Studio center, Microsoft Flight Simulator right)

LARD -- Landing Approach Runway Detection--Dataset
for Vision Based Landing . Ducoffe et al. 2023. ArXiv
https://github.com/deel-ai/LARD

CertifAI chair
16/11/2023

Inteded function: camera-based detection of
intruder drone:
- Focus and tracking of the drone by the camera
ANITI focus:

§ Extension of existing academic and CS

Group proprietary dataset

§ ODD definition

§ Model design

§ Implementation on the NVIDA Xavier

- Main difficulties
§ Object size ≤ 25 pixels2

§ Birds and drones

§ Position within the image

- Collaboration with IRT Saint Exupéry – CS
Group within ARCHEOCS project

9

DDT – drone detection tracking

Bird

Drone

Camera PTZ

Intruder (X,Y,Z)

Surveillance area

Elevation

Trajectory

Velocity vector

D < 800m

D < 400m

Critical Zone

Z1

Z2

Z3

CertifAI chair
16/11/2023

ODD definition via several operational scenarios
§ Category of objects (bird, drone), size of the objects, range

of velocities

§ Possible trajectories

§ Diversity of backgrounds (empty grass background,

buildings …)

§ Possible out of ODD (helicopter, plane)

Existing dataset
§ Example of academic datasets: Distant Bird Detection Dataset

for Safe Drone Flight https://github.com/kakitamedia/drone_dataset

§ Internal company collection of data

è limitations: not all the ODD is covered and many biases in

the dataset (position of the drone in the image, type of

background…)

Example of extension
§ unbiased position of the object

10

DDT – dataset extension Parameters Test Set Combinatorial - Range

Classes (Objets)

Object Size Min 20 pixels – Max 400 pixels

Background Sky, buildings, Landscape

Position Uniform Spatial distribution

Texture

Brightness
Monotonic Function

Geometric Transformation Rotation – Symmetric

Distribution of object position
in the dataset

Modification with uniform
spatial distributionTransformation to

unbiase the Position

https://github.com/kakitamedia/drone_dataset

CertifAI chair
16/11/2023

Outline & contributions

Semantic
ML model description in formal format

Trained ML model
System and Safety

Requirements

3. Runtime
verification

4. Implementation
Efficient and predictable code generation

CPU
Vector

extension

L1DL1I

L2

bus

DDR

2. Formal verification
Compliance with the requirements

3 targets: ARM v7 + NEON NVIDIA Xavier AGX HW accelerator: LeNet 5 streaming architecture
conv1

pool1

conv2

pool2

FC1

seq1

FC2

seq2

FC

x +

MAC

Purpose
verify that the ML-based system
fulfils the intended function in the
ODD.

1. ODD definition

CertifAI chair
16/11/2023

Reachability problems
§ Property: Given an input set X and a NN model realising the function F,

what is the reachable set F(X)?

§ Practical property:
– X is approximated with an abstract domain
– solver computes (an over-approximation of) F(X)

§ Existing solvers:
– Exact solvers: Reluplex/Marabou, Planet, …
– Approximating solvers: Auto-Lirpa (IBP, Crown, …), DecoMon, …

What you know:
§ Last year ANITI Days presentation with Mélanie
§ Lightning talk of Noémie

12

Reminder on formal verification

property

solved problem

CertifAI chair
16/11/202313

DecoMon – verification tool developed by Mélanie

Build a toolbox to ease the use of formal methods among Airbus Data Scientists.
https://github.com/airbus/decomon

Automatic Keras Conversion
(Formal Training)

Automatic Common properties built
with divisions

Business Research

CVPR 2023: FM for XAI
ICAF 2023: FM for predictive
maintenance
Ongoing submission: NASA FM …

Open-source Airbus library
Used by BUs
Airbus ML-flow

Compatibility with ANITI’s libraries

https://github.com/airbus/decomon

CertifAI chair
16/11/2023

Definition [p-box]: p ∈ N, a p-dimensional box [b]p is a set
of Rp defined as the cartesian product of p intervals:

[b]p = ×i<p+1 [li,ui]
Definition (Similar behaviour).
• A = {CoC,WL,SL,WR,SR}.
We consider that a NNpa,range behaves similarly to the LUTpa
on l if

decisions NNpa,range(l) ⊆ decisions LUTpa(l)

Collaboration with DEEL mission certif, Collins

14

Application on ACAS Xu

Verif time Number of true Success rate

Reluplex NN 5 days 254 670 84%

adversarial 17 hours 286 023 94%

Corner 32 hours 272 212 90%

deellip 26 min 280 000 92%

Case 2 5D: 36.106 p-boxes

Case 1 3D (fixing vown, vint): 304 000 p-boxes

Verif time Number of true Success rate

Reluplex NN > year

adversarial 29 days 34 352 549 93.4%

Corner > 1 month

deellip 3 days 34 173 698 92.9%

Towards certification of a reduced footprint acas-xu system: A hybrid ml-based solution. Damour et al. Safecomp. 2021
Toward the certification of safety-related systems using ML techniques: the ACAS-Xu experience. Gabreau et al. ERTS. 2022

Decision
algorithm

Clear of Conflict (CoC)
Weak Left (WL)
Weak Right (WR)
Strong Left (SL)
Strong Right (SR)

r
q
y
vint
vown
t

CertifAI chair
16/11/2023

Outline & contributions

Semantic
ML model description in formal format

Trained ML model System and Safety
Requirements

3. Runtime
verification

4. Implementation
Efficient and predictable code generation

3. Formal verification
Compliance with the requirements

Purpose
➔ In addition to formal verification
➔ Detect hazardous behaviors at runtime

Research focus: Evaluation of safety monitors
➔ What are the relevant metrics to assess safety

monitors?
➔ Is it possible to unify the evaluation method to

enable a fair comparison of safety monitors

CPU Vector
extension

L1DL1I

L2

bus

DDR

3 targets: ARM v7 + NEON NVIDIA Xavier AGX HW accelerator: LeNet 5 streaming architecture
conv1

pool1

conv2

pool2

FC1

seq1

FC2

seq2

FC

x +
MAC

1. ODD definition

CertifAI chair
16/11/202316

Runtime Safety Monitoring of Deep Neural Networks

Sensory input (e.g., Image) Prediction used by critical
system

Deep Neural Network

Images: Cordts et al. "The cityscapes dataset for semantic urban scene understanding."

Safety Monitor (may observe many parts of the DNN)

Warning
unsafe to use the DNN predictions

What is Safety Monitoring of Deep Neural Networks ?

CertifAI chair
16/11/2023

CertifAI Chair Contribution : Unambiguous evaluation measures for safety monitors

dog

dog

cat

cat

OMS Monitor should accept

OMS Monitor should reject

OMS Monitor should accept

OMS Monitor should reject

Out-of-Model-Scope: detecting situations where DNN may fail
⇒ dependent on the DNN

Out-of-Distribution: detecting situations that are not sampled
according to the training distribution

⇒ independent from the DNN (dependent on the dataset)

17

dog

dog

cat

cat

OOD Monitor should accept

OOD Monitor should reject

OOD Monitor should reject

OOD Monitor should accept

➔ The definition of OOD is ambiguous e.g., how much
perturbation is required to define OOD?

➔ A perfect OOD detector can discard valid predictions the
DNN

➔ The best monitor for OOD is not always the best to detect
errors

➔ The definition of OMS is objective
➔ OMS is not assuming which situations are difficult for the

DNN

Out-of-Distribution Detection Is Not All You Need, Joris Guérin, Kévin Delmas, Raul Ferreira &
Jérémie Guiochet, AAAI 2023

CertifAI chair
16/11/202318

CertifAI Chair Contribution: OMS-based monitor evaluation framework

Evaluation framework inspired from RL training
process
➔ Assess the safety and capacity to complete the

mission (i.e., mission reward)
➔ Applicable to any monitor for perceptive functions
➔ Request a clear formalisation of the assumptions that

are made regarding the impact of a ML error on the
system's safety

Applied on automotive and UAV use cases and
demonstrates that:
➔ Monitors developed for OOD may not be the best to

ensure the safety

Unifying Evaluation of Machine Learning Safety Monitors, Joris Guérin, Raul Ferreira,
Kévin Delmas & Jérémie Guiochet, ICRA 2022 & ISSRE 2022

CertifAI chair
16/11/202319

CertifAI Chair Contribution: Designing and tuning process for efficient safety monitors

Selecting a rejection threshold is pivotal during the

design of a safety monitor but:
➔ Many works use threshold-agnostic evaluation metrics

(e.g., AUROC)

➔ Very-few works are adressing the problem of selecting an

optimal threshold
➔ The actual evaluation the safety monitor should be done for

the selected rejection threshold

Develop a threshold optimisation method for safety

monitors:
➔ Assess the impact of prior knowledge on problematic

situations (i.e., runtime threats)

➔ Select threshold-aware metrics to evaluate a monitor

➔ Provide an automated optimization of the rejection

threshold

Red Pill or Blue Pill? Thresholding Strategies for Neural Network Monitoring, Tran
Khoi, Joris Guérin, Kévin Delmas & Jérémie Guiochet, ICLR 2024 (under review)

CertifAI chair
16/11/2023

Outline & contributions

Semantic
ML model description in formal format

Trained ML model
System and Safety

Requirements

3. Runtime
verification

4. Implementation
Efficient and predictable code generation

CPU
Vector

extension

L1DL1I

L2

bus

DDR

2. Formal verification
Compliance with the requirements

3 targets: ARM v7 + NEON NVIDIA Xavier AGX HW accelerator: LeNet 5 streaming architecture
conv1

pool1

conv2

pool2

FC1

seq1

FC2

seq2

FC

x +

MAC

Purpose
Implement the ML models on
embedded hardware while
preserving the semantic and being
able to compute WCET

1. ODD definition

CertifAI chair
16/11/2023

Certification context (DO 178-C)
§ Traceability between the requirements and the (source) code
§ Capacity to compute tight WCET
§ Intense testing

ACETONE Automatic sequential C code generation from inference model
https://github.com/idealbuq/NNCodeGenerator

§ Convolution, 3 implementation: direct conv, naïve gemm, gemm (block matrices)
Criteria:
§ Semantic preservation: similar results in the order of 10-6

§ WCET
§ MET

21

ACETONE Predictable programming framework for machine learning applications in safety-critical systems

simple to add new DNN structures, new types of layers or refine the existing ones. Similarly, the front-end
can be easily adapted to read another model description format.

In a first place, we proceeded to develop several versions of the code generated by ACETONE, which
corresponded to di↵erent compilation strategies. The first version had a completely generic inference
function and used function pointers to refer to the correct layer in the context. In the second version,
we proceed to inline the layer’s functions and have a completely model-dependent inference function.
Finally, the third version developed included loop-unrolling besides inlining of all the functions. Our goal
was to understand what was the most suited approach for a given model and hardware.

Following a thorough evaluation, briefly described hereafter, we adhered to the strategy of version
two: for a given inference model ACETONE generates a C code composed of some generic initialization
functions and other model-dependent functions / files. In the Python prototype, we have a hard-coded
template library with the definition of the layers’ functions, which will be instantiated with the adequate
parameters whenever their presence is identified while parsing the model, generating a model-dependent
C description of the inference function. Other model-dependent files refer to the weights, biases and
auxiliary parameters that are also written as C files.

2.3 Comparative approach for C code generation frameworks

The last contribution was then a careful evaluation of our framework together with a comparison with
state of the art C code generator frameworks, namely Keras2c [CEAK21] and uTVM with static C
runtime [Sta21]. First we selected a set of representative benchmarks compliant with our restrictions
(e.g. feed-forward DNN with restricted types of layers). We first applied our framework to the fully-
connected ACAS-Xu [OPM+19] neural networks. Afterwards, we tried classical convolutional models
used in the computer vision domain, such as LeNet-5 [LBD+89], CifarNet [Kri09], AlexNet [KSH12] and
VGG-16 [SZ15].

We then identified a set of criteria to assess the quality of a code in accordance with the DO-178C ob-
jectives: (1) semantic preservation: (2) worst-case execution time, (3) measured execution time, (4) mem-
ory layout of executable. The semantic preservation criteria is defined by the maximum error observed
when comparing the outputs of the code generation framework with those of the training framework,
trough the L-infinity norm. In order to assess the predictability, we compiled each C code for a lpc2138
arm-based target, and computed its WCET with OTAWA [BCRS10]. We then ported the binary on an
arm Cortex-A15 of the keystone [Tex13] to evaluate its performance and to compare the measured and
worst-case execution times (see table 1). Finally, we were also interested in the memory layout of the
generated executables, as an e�cient use of the resources is related to predictability and performance.

Execution time [cycles] WCET [cycles]

Framework
Architecture ACAS-Xu

decr128
LeNet-5 CifarNet

ACAS-Xu
decr128

LeNet-5 CifarNet

ACETONE 533 767 12 186 378 233 450 428 6 128 253 165 718 749 3 018 534 290
Keras2C 1 104 134 25 786 401 642 390 830 36 838 054 1 160 385 934 97 959 064 345

uTVM static 681 708 10 201 249 193 599 362 6 765 413 113 449 651 3 215 754 680

Table 1: Measured execution (inference) times on the arm Cortex-A15 (implementing the ARMv7 archi-
tecture) of the keystone and WCET given by OTAWA.

Even though the lpc2138 arm-based target is not representative of the arm Cortex-A15 of the
keystone, the comparison between the WCETs of the various versions still provides valuable insights
on how the shape of the generated code impacts the level of precision that can be achieved during the
analysis. For instance, we notice from table 1 that the inference C code generated by Keras2c is highly
penalized by the OTAWA analysis. Since it employs function pointers we are unable to provide contex-
tual information about the layers function calls, thus OTAWA assumes that each call to a specific layer
function is a call to the most expensive layer of this type. In ACETONE, the layers are implemented
as a sequence of separated loops and in static uTVM as a sequence of separate instructions calling the
layer functions so OTAWA is able to benefit from the detailed flow-fact information for these versions.

2.4 Extending ACETONE with e�cient gemm-based convolution routines.

At the end of this validation phase of ACETONE we observed that overall, in terms of performance, we
were comparable to static uTVM and even better than Keras2c in some use cases, while still respecting

4

CPU Vector
extension

L1DL1I

L2

bus
DDR

Extending a predictable machine learning framework with efficient gemm-based convolution routines. De Albuquerque et al. RTS. 2023
ACETONE: Predictable Programming Framework for ML Applications in Safety-Critical Systems. De Albuquerque et al. ECRTS. 2022

https://github.com/idealbuq/NNCodeGenerator

CertifAI chair
16/11/2023

Purpose: Impact of hardware faults on the execution of DNN
§ Type of accelerator: streaming architecture

car

bicycle

clear

§ HW fault injection
§ Formal methods to assess the quality of fault injection strategy
§ Reduction of fault injection points while preserving the coverage

Collaboration with NXP

22

Neural network hardware accelerator

conv1

pool1

conv2

pool2

FC1

seq1

FC2

seq2

FC

x +
MAC

Critical

failure

Quality of Fault Injection Strategies on Hardware Accelerator. Guinebert et al. Safecomp 2022.
Fault injection strategies: identifying HW failures with functional impact. Guinebert et al. ETS industrial paper. 2023

CertifAI chair
16/11/2023

End-to-end development
process to achieve the
expected level of
performances and provide
some of the evidences
required by certification.

ANITI2: industrial chair on
“Embeddability and safety
assurance of ML-based
systems under certification
(CertifEmbAI)”

23

Conclusion & future work

Semantic

Aware Training
- Embeddability and verifiability aware training
- Embeddability and verifiability aware

quantization

System and Safety
Requirements

Runtime
verification

Implementation
More parallelism, more programming

languages …

Formal verification
Image based systems

Hybrid architecture – more accelerators – WCET estimation

CPU

bus

CPU DDR

GPU FPGA DLA

ODD definition

Use cases
Continue contributing to use case
definition and analysis (e.g. LARD, DDT,
drone emergency landing)

