

Université de Toulouse

Members of the chair

Lightening talks

2

Scope – certification

Certification

- evaluation of an argumentation, to convince that a system (i.e., its architecture, its settings, including mitigation means...) is compliant with the regulatory requirements
- accepted mean of compliance with the requirements is to rely on mature standards

Applicative scope:

ML (Machine Learning) based systems

Active contribution to

- DEEL mission certif
- EUROCAE/FAA ED 324 / ARP 6983 (more particularly on the implementation section)

ARP 4754

ARP 6983

DO 178

DO 254

Outline & contributions

ACAS Xu

Avoidance Collision System for vertical and horizontal cooperative and noncooperative avoidance (Multi-Intruders)

Intended function "the intruder should not enter in the ownship envelope"

ODD: pre-defined ranges of inputs

- Initially based on look-up tables (LUT)
- Replacing the LUT by neural networks proposed by Standford
 - Interest: Gain in memory footprint (from 4Go to 3Mo)

ANITI focus:

- Formal verification
- Hybrid architecture definition (safety net as a backup when the NNs do not replicate well the LUT)
- Implementation

State of the intruder relative to ownship

Université de Toulous

Intended function: identify a landing zone in urban environment ensuring a safe emergency landing. If no suitable landing is found, the flight is aborted.

ANITI focus:

Runtime verification

CertifAl chair 16/11/2023

VBL (vision-based landing)

Intended function: computing the position of the aircraft from the position of the runway within an image taken during the approach and landing phases of an aircraft.

ANITI focus:

- Dataset design
- ODD definition
- Formal verification
- Implementation

LARD – Landing Approach Runway Detection – Dataset

- Training dataset
 - Google Earth Studio and Microsoft Flight Simulator synthetic images of 33 runways
- Test dataset
 - synthetic images of 79 runways
 - real footage of 38 runways

Collaboration with **DEEL** mission certif

LARD -- Landing Approach Runway Detection--Dataset for Vision Based Landing . Ducoffe et al. 2023. ArXiv https://github.com/deel-ai/LARD

Tarbes: Comparison of a real landing footage (left) with synthetic replicas (Google Earth Studio center, Microsoft Flight Simulator right)

CertifAl chair 16/11/2023

de Toulous

8

DDT – drone detection tracking

Inteded function: camera-based detection of intruder drone:

- Focus and tracking of the drone by the camera **ANITI focus:**
 - Extension of existing academic and CS Group proprietary dataset
 - ODD definition
 - Model design
 - Implementation on the NVIDA Xavier

- Main difficulties

- Object size ≤ 25 pixels²
- Birds and drones

Bird

- Position within the image
- Collaboration with IRT Saint Exupéry CS Group within ARCHEOCS project

DDT – dataset extension

ODD definition via several operational scenarios

- Category of objects (bird, drone), size of the objects, range of velocities
- Possible trajectories
- Diversity of backgrounds (empty grass background, buildings ...)
- Possible out of ODD (helicopter, plane)

Existing dataset

- Example of academic datasets: Distant Bird Detection Dataset for Safe Drone Flight <u>https://github.com/kakitamedia/drone_dataset</u>
- Internal company collection of data
- ➔ limitations: not all the ODD is covered and many biases in the dataset (position of the drone in the image, type of background...)

Example of extension

unbiased position of the object

Outline & contributions

Reminder on formal verification

Reachability problems

- Property: Given an input set X and a NN model realising the function F, what is the reachable set F(X)?
- Practical property:
 - X is approximated with an abstract domain
 - solver computes (an over-approximation of) F(X)
- Existing solvers:
 - Exact solvers: Reluplex/Marabou, Planet, ...
 - Approximating solvers: Auto-Lirpa (IBP, Crown, ...), DecoMon, ...

What you know:

- Last year ANITI Days presentation with Mélanie
- Lightning talk of Noémie

12

Build a toolbox to ease the use of **formal methods** among Airbus Data Scientists. <u>https://github.com/airbus/decomon</u>

Open-source Airbus library Used by BUs Airbus ML-flow

Compatibility with ANITI's libraries

Research
CVPR 2023: FM for XAI ICAF 2023: FM for predictive maintenance Ongoing submission: NASA FM

Application on ACAS Xu

Definition [p-box]: $p \in N$, a p-dimensional box $[b]^p$ is a set of R^p defined as the cartesian product of p intervals:

 $[b]^{p} = \times_{i < p+1} [I_{i}, u_{i}]$

Definition (Similar behaviour).

• $A = \{CoC, WL, SL, WR, SR\}.$

We consider that a $NN_{\text{pa,range}}$ behaves similarly to the LUT_{pa} on I if

decisions $NN_{pa,range}(I) \subseteq decisions LUT_{pa}(I)$

Collaboration with DEEL mission certif, Collins

Case 1 3D (fixing vown, vint): 304 000 p-boxes

	Verif time	Number of true	Success rate	
Reluplex NN	5 days	254 670	84%	
adversarial	17 hours	286 023	94%	
Corner	32 hours	272 212	90%	
deellip	26 min	280 000	92%	

Case 2 5D: 36.10⁶ p-boxes

	Verif time	Number of true	Success rate
Reluplex NN	> year		
adversarial	29 days	34 352 549	93.4%
Corner	> 1 month		
deellip	3 days	34 173 698	92.9%

Towards certification of a reduced footprint acas-xu system: A hybrid ml-based solution. Damour et al. Safecomp. 2021 Toward the certification of safety-related systems using ML techniques: the ACAS-Xu experience. Gabreau et al. ERTS. 2022

Outline & contributions

What is Safety Monitoring of Deep Neural Networks ?

unsafe to use the DNN predictions

Images: Cordts et al. "The cityscapes dataset for semantic urban scene understanding."

CertifAl Chair Contribution : Unambiguous evaluation measures for safety monitors

Out-of-Model-Scope: detecting situations where DNN may fail ⇒ dependent on the DNN Out-of-Distribution: detecting situations that are not sampled according to the training distribution

\Rightarrow independent from the DNN (dependent on the dataset)

- → The definition of OMS is **objective**
- → OMS is not assuming which situations are difficult for the DNN

Out-of-Distribution Detection Is Not All You Need, Joris Guérin, Kévin Delmas, Raul Ferreira & Jérémie Guiochet, AAAI 2023

- → The definition of OOD is **ambiguous** e.g., how much perturbation is required to define OOD?
- → A perfect OOD detector can discard valid predictions the DNN
- → The best monitor for OOD is not always the best to detect errors

Evaluation framework inspired from RL training process

- → Assess the safety and capacity to complete the mission (i.e., mission reward)
- → Applicable to any monitor for perceptive functions
- → Request a clear formalisation of the assumptions that are made regarding the impact of a ML error on the system's safety

Applied on automotive and UAV use cases and demonstrates that:

→ Monitors developed for OOD may not be the best to ensure the safety

Unifying Evaluation of Machine Learning Safety Monitors, Joris Guérin, Raul Ferreira, Kévin Delmas & Jérémie Guiochet, ICRA 2022 & ISSRE 2022

CertifAl Chair Contribution: Designing and tuning process for efficient safety monitors

Selecting a rejection threshold is pivotal during the design of a safety monitor but:

- → Many works use threshold-agnostic evaluation metrics (e.g., AUROC)
- → Very-few works are adressing the problem of selecting an optimal threshold
- → The actual evaluation the safety monitor should be done for the selected rejection threshold

Develop a threshold optimisation method for safety monitors:

- → Assess the impact of prior knowledge on problematic situations (i.e., runtime threats)
- → Select threshold-aware metrics to evaluate a monitor
- → Provide an automated optimization of the rejection threshold

Red Pill or Blue Pill? Thresholding Strategies for Neural Network Monitoring, Tran Khoi. Joris Guérin, Kévin Delmas & Jérémie Guiochet, ICLR 2024 (under review)

Outline & contributions

Certification context (DO 178-C)

- Traceability between the requirements and the (source) code
- Capacity to compute tight WCET
- Intense testing

ACETONE Automatic sequential C code generation from inference model

https://github.com/idealbuq/NNCodeGenerator

Convolution, 3 implementation: direct conv, naïve gemm, gemm (block matrices)

Criteria:

• Semantic preservation: similar results in the order of 10⁻⁶

WCET

NЛ	FT
1 1 1	

	Execution time [cycles]			WCET [cycles]		
Architecture Framework	ACAS-Xu decr128	LeNet-5	CifarNet	ACAS-Xu decr128	LeNet-5	CifarNet
ACETONE	533767	12186378	233450428	6128253	165718749	3018534290
Keras2C	1104134	25786401	642390830	36838054	1160385934	97959064345
uTVM static	681 708	10201249	193599362	6765413	113449651	3215754680

Extending a predictable machine learning framework with efficient gemm-based convolution routines. De Albuquerque et al. RTS. 2023 ACETONE: Predictable Programming Framework for ML Applications in Safety-Critical Systems. De Albuquerque et al. ECRTS. 2022

ANIT

de Toulouse

Purpose: Impact of hardware faults on the execution of DNN

• Type of accelerator: streaming architecture

CertifAl chair

16/11/2023

- HW fault injection
- Formal methods to assess the quality of fault injection strategy
- Reduction of fault injection points while preserving the coverage

Collaboration with NXP

Quality of Fault Injection Strategies on Hardware Accelerator. Guinebert et al. Safecomp 2022. Fault injection strategies: identifying HW failures with functional impact. Guinebert et al. ETS industrial paper. 2023

Conclusion & future work

End-to-end development process to achieve the expected level of performances and provide some of the evidences required by certification.

ANITI2: industrial chair on "Embeddability and safety assurance of ML-based systems under certification (CertifEmbAI)"

