
1

Airbus Amber

Solving scheduling problems with Constraint
Programming and Graph Neural Networks
ANITI Days – 16-17 November 2023

Guillaume Povéda, Florent Teichteil-Koenigsbuch

Cutting-edge algorithms to
optimize the nominal

manufacturing workflow

● Multi-skill worker allocation

● Versatile time constraint
modeling between tasks

● Non-renewable and renewable
resource sharing

➊ Deep learning rescheduling
strategies for fast disruption
management & adaptation

Disrupted
schedule

Problem
description

Adapted
schedule

Graph Neural
Network

scheduling policy

● Pre-trained rescheduling policy

● Nearly instantaneous adaptation
of current schedule to disruption
events

● Possibility to improve adapted
schedule as time allows

➋ Massive uncertain
multi-scenario analysis &
robust decision-making

➌

…

Scenario 1

Scenario 2

Scenario N

…

Best
candidate

tasks

● Fast scenario evaluation and
prediction by inferring the deep
learning rescheduling policy

● Robust continuous scheduling
based on real-time statistical
analysis and aggregation of
multiple scenarii and criteria

Part I Part II

Manufacturing scheduling @Airbus

Part I
Large-Scale Scheduling
with Limited Resources
and Complex Relations
in Practice

3

Scheduling in industry

4

Job shop scheduling problem
-Unitary resource
-Precedence constraint between subpart of jobs

Flexible shop scheduling problem
-Job shop + flexibility of resource allocation for some
jobs.

Resource constrained project scheduling problem
(RCPSP)
- Job shop with “cumulative” resource (!=1), modeling
workforce, tool, area, energy..

Multi-skill RCPSP
- Adding worker skills modelisation + skills
requirements to each activities : increasing realism of
real problems

Problems usually look like classical
JSP/RCPSP but with additional
constraints : preemption of tasks,
calendar shifts and multiskill workforce.

Limitation of academical scheduling problems

Jobshop and RCPSP fail to model (multi) skills individual workers
1. Preemption of tasks is usually impossible in such optimisation models
2. Generalized precedence constraints are usually not considered in classical model

Contributions :
- Efficient constraint programming modeling
- Generic Large Neighborhood Search
- Capitalisation in open-source libraries

More :
Partially Preemptive Multi Skill/Mode Resource-constrained Project Scheduling with
Generalized Precedence Relations and Calendars, CP2023, Povéda, Alvarez, Artigues

5

Constraint programming for complex scheduling

6

CPMODEL
array[1..9, 1..9] of var 1..9: grid;
forall i in row:
 allDifferent(grid[i, :]);
forall i in column:
 allDifferent(grid[:, i]);
…

Task 0 n°0 Task 0 n°1 Task 0 n°2

Task 1 n°0 Task 1 n°1 Task 1 n°2 Task 1 n°3

CPMODEL
array[1..Nbtasks, 1..N] of var Interval: schedule;

forall i,j in Precedence:
 schedule[j,1].start >= schedule[i,N].end
….

Some features of the developed CP model :
- Use of optional chain of interval variables for the

preemption feature
- Softening hard generalized precedence constraints

Large neighborhood search

Initial
Solution

Master
Problem
 (MP)

stop

RMP = BuildSubproblem(MP, …)

Sol = solve_cp(RMP)

Sol = postpro(Sol)

Return

No

Yes

7

Portfolio evaluation

Method
1

Method
2

Method
n-1

……… Method
n

Random
Selection
0.1

Random
Selection
0.2

“Cut Part 4” “Cut Part 5”

Portfolio
method

Random
pick of
method

Performance of LNS solver with different subproblem methods
have been tested:
- random and cut methods taken individually
- portfolio of previous methods (called Mixing in the results
table)

Mixing method achieved the most consistent performance (best
or second best results) on our few testing instance

8

One library to capitalize/benchmark different solving
methods for discrete optimisation problems.

Easy example of use :
rcpsp_problem = parse(file)
results = solve(rcpsp_problem, solver=CPSolver)

Problem definition
- evaluate(solution)
- satisfy(solution)
- …

Solvers

Solve()

Capitalisation of optimisation models/solvers : open-source libraries

9

Now used in 3 publications around scheduling :
-“An Empirical Evaluation of Permutation-Based Policies for Stochastic
RCPSP”, Olivier Regnier-Coudert, Guillaume Povéda, GECCO 2021

-“Fast and Robust Resource-Constrained Scheduling with Graph Neural
Networks” Teichteil-Königsbuch, F., Povéda, G., González de Garibay Barba, G.,
Luchterhand, T., & Thiébaux, S., ICAPS 2023

- ‘Partially Preemptive Multi Skill/Mode Resource-constrained Project
Scheduling with Generalized Precedence Relations and Calendars’, Povéda,
Alvarez, Artigues, CP2023,

CP paper
landscape

https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide

https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide

Main interest:
1) Benchmark solvers on the same problem but from different

communities (LP, CP, Metaheuristics, soon ML)
2) Combine easily solvers in some more complex pipeline (→ such

as the LNS we describe)
3) Educational purpose for combinatorial optimization introduction

Main problem implemented:
Workforce allocation problems, routing, scheduling (JSP, RCPSP and
variants..)..

Example of solvers binded:

10

https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide

Capitalisation of optimisation models/solvers : open-source libraries

https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide

Part II
Frugal Learning of
Deep Learning
Scheduling
Heuristics
With the help of model-based solvers

11

Solvers

12

Airbus Amber

if RTasks != {} /\ sum_rr
> rc[r] then
cumulative(
 [s[i] | i in RTasks],
 [d[i] | i in RTasks],
 [rr[r, i] | i in RTasks],
 rc[r]
)

Cumulative (special case: non-overlapping)

TASK

TASK

TASK

TASK

TASK

RESOURCE RESOURCE

s[i] + d[i] <= s[j]

precedence

s[i] + d[i] <= s[j]
precedence

s[i]
+ d[i]

<= s[j]

precedence

s[i] + d[i] <= s[j]
precedence

rr[r, i] > 0

resource usage

rr[
r,

i]
>

0

re
so

ur
ce

 u
sa

ge

TASK TASK

TASK

OBJECTIVE
min(max(i)(d[i]+s[i]))

Currently using
TransformerConv as
NN layers:

Precedence edge encoding: [1, 0, 0, 0, 0]

Resource edge encoding: [0, 1, 0, 0, #consumed]

Task node encoding: [0, 1, 0, duration]

Resource node encoding: [1, 0, #resources, 0]

RCPSP represented as a Graph (Neural Network)

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?highlight=parallel#torch_geometric.nn.conv.TransformerConv

13

Airbus Amber

TRAINING

Batch
i

CP solver

Graph Neural
Network Loss minimization

Back propagation

RCPSP
j

Hybridizing CP+GNN: our SIREN training algorithm
(80% of 2040 RCPSP instances from PSPLIB)

Don't learn to mimic the CP solver but learn to directly produce schedules
with a Graph Neural Network structure specific to all RCPSP problems

14

Airbus Amber

TESTING
RCPSP

j CP solver

Infeasible
schedule

Feasible
schedule

Make
feasible

TESTING
RCPSP

j SGS procedure

Infeasible
schedule

Feasible
schedule

Build
schedule

Extract task
ordering

Idea 1 (not working well)

Idea 2 (working well) SIREN

SGS is way faster than CP!

Testing phase: our SIREN inference algorithm

Infer schedule

Infer schedule

15

Airbus Amber

Protocol: evaluate vanilla CP solver time to get same quality solution as GNN+SGS solver, then
compare with GNN+SGS solver time

Using ResTransformer with 256 hidden neurons and 50000 epochs

● In more than 82% of problems CP-SAT takes more time than SIREN to
achieve a solution of comparable quality.

● In over 40% of the cases, CP-SAT's computational overhead ranges
from 10 times up to over 20,000 times the computation time of SIREN.

CP + GNN-SGS : testing statistics
(20% of 2040 RCPSP instances from PSPLIB)

16

Airbus AmberCP + GNN-SGS (SIREN) vs custom ordering heuristics
(20% of 2040 RCPSP instances from PSPLIB)

3 heuristics: DUM, MDPR, CCPM are all using SGS with a different task ordering

● DUM : [1, 2 … N] : order by index of task
● MDPR : Order by maximum of descendants in the precedence graph.
● CCPM : Order using critical path method outputs.

Using ResTransformer with 256 hidden neurons and 50000 epochs

Ours is systematically better

17

Airbus Amber

Final words: thank you ANITI-1.0!

Knowledge
Exchange

Scientific
Collaboration

Building Trust
and Long-Term
Relationships

Innovative methods for solving
scheduling problems inspired by airbus
manufacturing applications
➔ ICAPS-23 paper: Hybrid DL/CP
➔ CP-23 paper: LNS/CP

ANITI
Knowledge
Compilation

Chair

Get-To-Know and to work together 👐
➔ TUPLES project
➔ ANITI-2 HEROIC chair proposal

Discussions
➔ Seminars
➔ Social activities ☕

Cross-Fertilization

Use Cases

Methods

