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Cutting-edge algorithms to 
optimize the nominal 

manufacturing workflow

● Multi-skill worker allocation

● Versatile time constraint 
modeling between tasks

● Non-renewable and renewable 
resource sharing

➊ Deep learning rescheduling 
strategies for fast disruption 
management & adaptation

Disrupted 
schedule

Problem 
description

Adapted 
schedule

Graph Neural 
Network 

scheduling policy

● Pre-trained rescheduling policy

● Nearly instantaneous adaptation 
of current schedule to disruption 
events

● Possibility to improve adapted 
schedule as time allows

➋ Massive uncertain 
multi-scenario analysis & 
robust decision-making

➌

…

Scenario 1

Scenario 2

Scenario N

…

Best 
candidate 

tasks

● Fast scenario evaluation and 
prediction by inferring the deep 
learning rescheduling policy

● Robust continuous scheduling 
based on real-time statistical 
analysis and aggregation of 
multiple scenarii and criteria

Part I Part II

Manufacturing scheduling @Airbus



Part I
Large-Scale Scheduling 
with Limited Resources 
and Complex Relations 
in Practice
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Scheduling in industry
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Job shop scheduling problem
-Unitary resource
-Precedence constraint between subpart of jobs

Flexible shop scheduling problem
-Job shop + flexibility of resource allocation for some 
jobs.

Resource constrained project scheduling problem 
(RCPSP)
- Job shop with “cumulative” resource (!=1), modeling  
workforce, tool, area, energy..

Multi-skill RCPSP
- Adding worker skills modelisation + skills 
requirements to each activities : increasing realism of 
real problems

Problems usually look like classical 
JSP/RCPSP but with additional 
constraints : preemption of tasks, 
calendar shifts and multiskill workforce.



Limitation of academical scheduling problems

Jobshop and RCPSP fail to model (multi) skills individual workers
1. Preemption of tasks is usually impossible in such optimisation models
2. Generalized precedence constraints are usually not considered in classical model

Contributions : 
- Efficient constraint programming modeling
- Generic Large Neighborhood Search
- Capitalisation in open-source libraries

More : 
Partially Preemptive Multi Skill/Mode Resource-constrained Project Scheduling with 
Generalized Precedence Relations and Calendars, CP2023, Povéda, Alvarez, Artigues
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Constraint programming for complex scheduling
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CPMODEL
array[1..9, 1..9] of var 1..9: grid;
forall i in row:
      allDifferent(grid[i, :]);
forall i in column:
      allDifferent(grid[:, i]);
…
        

Task 0 n°0 Task 0 n°1 Task 0 n°2

Task 1 n°0 Task 1 n°1 Task 1 n°2 Task 1 n°3

CPMODEL 
array[1..Nbtasks, 1..N] of var Interval: schedule;

forall i,j in Precedence:
      schedule[j,1].start >= schedule[i,N].end
….
        

Some features of the developed CP model : 
- Use of optional chain of interval variables for the 

preemption feature
- Softening hard generalized precedence constraints



Large neighborhood search 

Initial 
Solution

Master 
Problem
 (MP)

stop 

RMP = BuildSubproblem(MP, …)

Sol = solve_cp(RMP)

Sol = postpro(Sol)

Return

No

Yes
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Portfolio evaluation

Method 
1

Method 
2

Method 
n-1

……… Method 
n

Random 
Selection 
0.1

Random 
Selection 
0.2

“Cut Part 4” “Cut Part 5”

Portfolio 
method

Random 
pick of 
method

Performance of LNS solver with different subproblem methods 
have been tested: 
- random and cut methods taken individually
- portfolio of previous methods (called Mixing in the results 
table)

Mixing method achieved the most consistent performance (best 
or second best results) on our few testing instance

8



One library to capitalize/benchmark different solving 
methods for discrete optimisation problems.

Easy example of use : 
rcpsp_problem = parse(file)
results = solve(rcpsp_problem, solver=CPSolver)

Problem definition
- evaluate(solution)
- satisfy(solution)
- …

Solvers

Solve()

Capitalisation of optimisation models/solvers : open-source libraries
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Now used in 3 publications around scheduling : 
-“An Empirical Evaluation of Permutation-Based Policies for Stochastic 
RCPSP”,   Olivier Regnier-Coudert, Guillaume Povéda, GECCO 2021

-“Fast and Robust Resource-Constrained Scheduling with Graph Neural 
Networks”    Teichteil-Königsbuch, F., Povéda, G., González de Garibay Barba, G., 
Luchterhand, T., & Thiébaux, S., ICAPS 2023

- ‘Partially Preemptive Multi Skill/Mode Resource-constrained Project 
Scheduling with Generalized Precedence Relations and Calendars’, Povéda, 
Alvarez, Artigues,  CP2023, 

CP paper 
landscape

https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide

https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide


Main interest: 
1) Benchmark solvers on the same problem but from different 

communities (LP, CP, Metaheuristics, soon ML)
2) Combine easily solvers in some more complex pipeline (→ such 

as the LNS we describe)
3) Educational purpose for combinatorial optimization introduction

Main problem implemented: 
Workforce allocation problems, routing, scheduling (JSP, RCPSP and 
variants..)..

Example of solvers binded: 
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https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide

Capitalisation of optimisation models/solvers : open-source libraries

https://github.com/airbus/discrete-optimization
https://github.com/airbus/scikit-decide


Part II
Frugal Learning of 
Deep Learning 
Scheduling 
Heuristics
With the help of model-based solvers
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Solvers
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Airbus Amber

if RTasks != {} /\ sum_rr 
> rc[r] then          
cumulative(
   [ s[i] | i in RTasks ],
   [ d[i] | i in RTasks ],
   [ rr[r, i] | i in RTasks ],
   rc[r]
)

Cumulative (special case: non-overlapping)

TASK

TASK

TASK

TASK

TASK

RESOURCE RESOURCE

s[i] + d[i] <= s[ j]

precedence

s[i] + d[i] <= s[ j]
precedence

s[i] 
+ d[i] 

<= s[ j]

precedence

s[i] + d[i] <= s[ j]
precedence

rr[r, i] > 0

resource usage
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i] 
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0
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TASK TASK

TASK

OBJECTIVE
min(max(i)(d[i]+s[i]))

Currently using 
TransformerConv as 
NN layers:

Precedence edge encoding: [1, 0, 0, 0, 0]

Resource edge encoding: [0, 1, 0, 0, #consumed]

Task node encoding: [0, 1, 0, duration]

Resource node encoding: [1, 0, #resources, 0]

RCPSP represented as a Graph (Neural Network)

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?highlight=parallel#torch_geometric.nn.conv.TransformerConv
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TRAINING

Batch
i

CP solver

Graph Neural 
Network Loss minimization

Back propagation

RCPSP
j

Hybridizing CP+GNN: our SIREN training algorithm
(80% of 2040 RCPSP instances from PSPLIB)

Don't learn to mimic the CP solver but learn to directly produce schedules 
with a Graph Neural Network structure specific to all RCPSP problems
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TESTING
RCPSP

j CP solver

Infeasible 
schedule

Feasible 
schedule

Make 
feasible

TESTING
RCPSP

j SGS procedure

Infeasible 
schedule

Feasible 
schedule

Build 
schedule

Extract task 
ordering

Idea 1 (not working well)

Idea 2 (working well) SIREN

SGS is way faster than CP!

Testing phase: our SIREN inference algorithm

Infer schedule

Infer schedule
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Protocol: evaluate vanilla CP solver time to get same quality solution as GNN+SGS solver, then 
compare with GNN+SGS solver time

Using ResTransformer with 256 hidden neurons and 50000 epochs

● In more than 82% of problems CP-SAT takes more time than SIREN to 
achieve a solution of comparable quality.

● In over 40% of the cases, CP-SAT's computational overhead ranges 
from 10 times up to over 20,000 times the computation time of SIREN.

CP + GNN-SGS : testing statistics
(20% of 2040 RCPSP instances from PSPLIB)
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Airbus AmberCP + GNN-SGS (SIREN) vs custom ordering heuristics
(20% of 2040 RCPSP instances from PSPLIB)

3 heuristics: DUM, MDPR, CCPM are all using SGS with a different task ordering

● DUM : [1, 2 … N] : order by index of task
● MDPR : Order by maximum of descendants in the precedence graph.
● CCPM : Order using critical path method outputs.

Using ResTransformer with 256 hidden neurons and 50000 epochs

Ours is systematically better
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Final words: thank you ANITI-1.0!

Knowledge 
Exchange

Scientific 
Collaboration

Building Trust
and Long-Term 
Relationships

Innovative methods for solving 
scheduling problems inspired by airbus 
manufacturing applications
➔ ICAPS-23 paper: Hybrid DL/CP
➔ CP-23 paper: LNS/CP

ANITI
Knowledge 
Compilation 

Chair

Get-To-Know and to work together 👐
➔ TUPLES project
➔ ANITI-2 HEROIC chair proposal

Discussions
➔ Seminars
➔ Social activities ☕

Cross-Fertilization

Use Cases

Methods


