AI and PHYSICAL MODELS

Coordinators: F. Gamboa and S. Gratton
November 17, 2023
Chairs

1. AI for physical models with geometrical tools (Fabrice Gamboa IMT-UT3)
2. Data Assimilation and Machine Learning (Serge Gratton IRIT-ENSEIHT)

Covering a total of

- Permanent researchers (*Inner circle only*): 9
- Post Doc student: 1
- Ph. D students: 20

Publications

- Journal articles 26
- Conference proceedings 8
- Books 1
How we work

1. Recurrent meeting of the whole group, each 2-3 weeks:
 - What’s up?
 - One hour work group around a member’s talk

2. Semester one day workshop of the group. Example: First one, June 2021 organized in Foix by P. Boudier (NVIDIA).

Scientific contours

- At the crossroads of
 - Numerical Analysis (deterministic approaches)
 - Stochastic modelling and statistics
 - Optimisation
 - Computer sciences

- Strong interactions with the industrial world (majority of the PhDs are on topics proposed by industrial partners)
Partners

Industry
- RFence (startup specializing in intrusion detection)
- EDF ("Electricité De France") and CEA ("Commisariat de l’Energie Atomique")
- ATOS (1 CIFRE on DA and 1 on robustness)
- BRLi (1 CIFRE on the prediction of floods)
- Airbus (discussion of IA for simulations)
- RENAULT, SAFRAN, LIEBHERR, CONTINENTAL, NXP, ...

International collaborations
- Belgium, Columbia, Hong Kong, Ireland, Germany, Morocco, Uruguay, USA.
Sensitivity analysis and Computer code experiments

▶ Sensitivity analysis backgrounds for dimension reduction, interpretability and fairness
▶ Geometric optimisation problems for reliability of solutions produced by solvers
▶ Bayesian assimilation of complex computer codes
▶ Robustness wrt adversarial attacks

Optimization for ML

▶ Robust methods for stochastic problem
▶ Methods beyond first order
▶ Complexity analysis

Solving physical equations with ML

▶ Architectures informed by Physics
▶ Training constrained by Physics
▶ Use of tools from statistics for variable selection and model reduction
▶ HPC techniques for large scale problems
▶ Prediction in chaotic systems
People (I)

Permanent
- T. Pellegrini, R. Chhaibi, P. Boudier, S. Gurol, A. Buttari, S. Zhang, C. Lapeyre
- Associated members: A. Lagnoux, C. Pellegrini, F. Costantino, N. Savy.

Postdoc
- A. Fillion

External collaborations
- Ph.L. Toint (Namur)
- A. Kopaničáková (Brown)
People (II)

PhD students

- **Sensitivity Analysis and Robustness**
 - Clément Benesse
 - Louis Berry
 - Virgile Foy
 - Faouzi Hakimi
 - Marouane Il Idrissi
 - Baalu Ketema
 - Eva Lawrence
 - Damien Remot
 - Jérôme Stenger

- **Lightning talk**: Lightning talk
- *: CIFRE
- ♦: Joint

- **Optimization for ML**
 - Anirban Bose
 - Sadok Jerad
 - Ismail Khalfaoui
 - Alexey Lazarev
 - Mehdi Zouitine

- **Surrogates in ML**
 - Théo Beuzeville
 - Valentin Mercier
 - Vy Nguyen
 - Serigne Daouda Pene
 - Mathis Peyron
 - Justin Reverdi

- **AI and PHYSICAL MODELS**
- November 17, 2023
I. Optimal optimization Methods in ML
 ▶ Fast training algorithms (*OMS 2021, SIMAX 2020, SIOPT 2020*)
 ▶ Parallel solution of PDEs using physical domain decomposition techniques: improving scalability with global information exchange (*submitted*).

II. Prediction in time dependent physical systems
 ▶ Outperforming Data Assimilation algorithms with ML (*QJRMS, 2021*)
 ▶ Beating Data Assimilation algorithms with Data driven approach with VAE (*QJRMS, 2021*).

III. Fundamental and applied basis for sensitivity analysis (*IJUQ 2020, RESS 2021, Book SIAM 2021, Bernoulli 2022*).

IV. Reinforcement learning for satellite planning (*NeurIPS 2023*).
I. Improving DA with ML

DA refers to prediction of a time dependent variable combining models and data. DA: variational (projection), (small) ensemble

- DA crucially exploits dimensionality reduction.
- Use auto encoder to discover a latent geometry in the physical space
- Model reduction for DA using autoencoders and surrogate networks jointly.
- Not only exploit the latent structure, but also outperform the accuracy of the results obtained by the best DA algorithms. Results on the Lorenz-96 system of equations (Published in QJRMS), and on the 2-layer quasi geostrophic model of an operational code (OOPS).

<table>
<thead>
<tr>
<th>Name</th>
<th>RMSE</th>
<th>Inflation</th>
<th>σ_Q/σ_{Q_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETKF-Q (Reference)</td>
<td>0.193</td>
<td>1.15</td>
<td>0.05</td>
</tr>
<tr>
<td>ETKF-Q with surrogate model</td>
<td>0.225</td>
<td>1.116</td>
<td>0.1</td>
</tr>
<tr>
<td>Latent ETKF-Q with AE (Ours)</td>
<td>0.177</td>
<td>1.018</td>
<td>5.10^{-5}</td>
</tr>
<tr>
<td>Latent ETKF-Q with PCA</td>
<td>0.329</td>
<td>1.082</td>
<td>0.1</td>
</tr>
</tbody>
</table>
A possible invariant...

ODS autonomous \implies DA autonomous

Kalman filter analysis

The posterior mean and covariance depend on time

$$
\Sigma_t^a = \left(H^\top R^{-1} H + (\Sigma_t^b)^{-1} \right)^{-1},
\mu_t^a = \mu_t^b + \Sigma_t^a H^\top R^{-1} \left(y_t - \mathcal{H} (\mu_t^b) \right),
$$

but the analysis transformation does not!

$$
a = (\mu_t^b, \Sigma_t^b), y_t \mapsto (\mu_t^a, \Sigma_t^a)
$$

DA can be learned as a recurrent net.

$$
\begin{align*}
a^\theta &\in M \times Y \rightarrow M, \quad \text{(analysis)} \\
b^\theta &\in M \rightarrow M, \quad \text{(propagation)} \\
g^\theta &\in M \rightarrow \text{Gaussians}_X,
\end{align*}
$$

Published in Journal of Advances in Modelling Earth Sciences (JAMES).

AI and PHYSICAL MODELS
November 17, 2023
We consider the unconstrained nonlinear programming problem: Given dataset $\mathcal{D} = \{(x_j, c_j)\}_{j=1}^{p}$, find parameters θ of DDN as
\[
\min_{\theta \in \mathbb{R}^n} \mathcal{L}(\theta) := \frac{1}{p} \sum_{j=1}^{p} \ell(\text{DNN}(x_j, \theta), c_j) + R(\theta)
\]

Training is typically performed using 1st-order OFFO methods, e.g. AdaGrad, Adam, . . .

We propose a class of multilevel OFFO algorithms, which contains a momentum-less Adagrad

- **OFFO**: reduced sensitivity to the sub-sampling noise
- **Multi-level**: reduced computational cost

Multilevel Objective Function Free Trust-Region:

\[
\min_{\theta^{(F,k)} \in \mathbb{R}^n} \mathcal{L}
\]

\[
\min_{s^{(F,k)} \in \mathbb{R}^n} m_k(s^{(L,k)})
\]

subject to $|s^{(F,k)}| \leq \Delta^{(F,k)}$

\[
R^{(F,k)}
\]

Search direction $s^{(L,k)}$

Create local surrogate model $h^{(C)}$ of \mathcal{L} and minimize it within $\Delta^{(F,k)}$
II. OPT(2)

MOFFTR:

- Step size is controlled on all levels by means of
 \[\Delta_i^{(F,k)} := (\nabla \mathcal{L}(\theta^{(F,k)}))_i / w_i^{(F,k)}, \]
 where
 \[\zeta_i(k + 1)^\nu \leq w_i^{(F,k)} \leq \kappa w(k + 1)^\mu, \]
 or
 \[w_i^{(k)} := \left(\zeta_i + \sum_{j=0}^k (\nabla \mathcal{L}(\theta^{(F,k)}))^2 \right)^\mu \]

- Evaluation complexity (noiseless):
 At most \(O(\epsilon^{-2}) \) iterations are needed to reduce \(\|\nabla \mathcal{L}(\theta)\| \) below \(\epsilon \)

- Numerically tested by training ResNets for supervised learning applications

- Published in SIOPT ’23
III. GSA : (1) For understanding code failures

- **Studied code**: MC3D used by CEA. Simulates and computes the interaction between fuel and coolant for in severe nuclear accidents.
- **Exploring the code behaviour**: Runs with random samples in the input space.
- **Problem**: Large amount of runs (1/3) fail to converge

Work Objective: Analyze the sampled data to understand which of the inputs have the most influence on code failures.

Two methods:
- Conditionally to code failure, goodness-of-fit tests between random input and input samples.
- Dependence measures between each input and occurrence of code failure.
How to model a digital twin in order to realize the experimental validation of an industrial simulator dedicated to the design of nuclear core?

Problematic:

- Large dimension of the calibration problem: 1000 dimensions.
- Time-consuming computer code: Days on multiple processors

Proposition: Use of a Bayesian methodology to combine real measures and expert knowledge from simulators.

\[z_{x_i} = f_{\theta}(x_i) + e(x_i) + \delta(x_i) \]

where \(z \) are the measurements, \(f_{\theta} \) the computer code, \(\delta \) the simulator error, \(e \) the measurement error and \(\theta \) the parameters to be calibrated.
III. GSA: (2.2) Bayesian calibration of a nuclear reactor

Methodology

▶ **Break multi-physics into smaller pieces:** Emulator as a sum of sub-emulators.

▶ **Sample recombination:** Use of **specific** methods from neutronics leading to a significative increase of the effective training datasets.

Results

Possibility to perform the **calibration** of the **digital twin**, based on a small number of Monte-Carlo simulations using **specific neutron methods** and **experimental measurements** on already fabricated reactors.
IV. Reinforcement Learning applied to satellite planning

Objective
The objective is to explore deep reinforcement learning for developing heuristics for combinatorial optimization problems (COPS).

▶ Practical application: Satellite constellation scheduling, a complex COP.
▶ Alongside using Reinforcement Learning for combinatorial optimization problems, we also aim to develop tools to explain our agent’s behavior (XAI).

Figure: Satellite Constellation Scheduling: The objective is to match each observation with a suitable satellite and time window, while adhering to a multitude of complex constraints.