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Chairs involved

Chairs
1. AI for physical models with geometrical tools (Fabrice Gamboa IMT-UT3)
2. Data Assimilation and Machine Learning (Serge Gratton IRIT-ENSEIHT)

Covering a total of
▶ Permanent researchers (Inner circle only): 9
▶ Post Doc student: 1
▶ Ph. D students: 20

Publications
▶ Journal articles 26
▶ Conference proceedings 8
▶ Books 1
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Group outlines

How we work
1. Recurrent meeting of the whole group, each 2-3 weeks:

▶ What’s up ?
▶ One hour work group around a member’s talk

2. Semester one day workshop of the group. Example: First one, June 2021 organized
in Foix by P. Boudier (NVIDIA).

Scientific contours
▶ At the crossroads of

▶ Numerical Analysis (deterministic approaches)
▶ Stochastic modelling and statistics
▶ Optimisation
▶ Computer sciences

▶ Strong interactions with the industrial world ( majority of the PhDs are on topics
proposed by industrial partners)
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Partners

Industry
▶ RFence (startup specializing in intrusion detection)
▶ EDF (”Electricité De France”) and CEA (”Commisariat de l’Energie Atomique”)
▶ ATOS (1 CIFRE on DA and 1 on robustness)
▶ BRLi (1 CIFRE on the prediction of floods)
▶ Airbus (discussion of IA for simulations)
▶ RENAULT, SAFRAN, LIEBHERR, CONTINENTAL, NXP, ...

International collaborations
▶ Belgium, Columbia, Hong Kong, Ireland, Germany, Morocco, Uruguay, USA.
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Theme perimeter: Improving physical models simulation via ML

Sensitivity analysis and Computer
code experiments
▶ Sensitivity analysis backgrounds for

dimension reduction, interpretability and
fairness

▶ Geometric optimisation problems for
reliability of solutions produced by
solvers

▶ Bayesian assimilation of complex
computer codes

▶ Robustness wrt adversarial attacks
Optimization for ML
▶ Robust methods for stochastic problem
▶ Methods beyond first order
▶ Complexity analysis

Solving physical equations with ML
▶ Architectures informed by Physics
▶ Training constrained by Physics
▶ Use of tools from statistics for variable

selection and model reduction
▶ HPC techniques for large scale

problems
▶ Prediction in chaotic systems
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People (I)

Permanent
▶ T. Pellegrini, R. Chhaibi, P. Boudier, S. Gurol, A. Buttari, S. Zhang, C. Lapeyre
▶ Associated members: A. Lagnoux, C. Pellegrini, F. Costantino, N. Savy.

Postdoc
▶ A. Fillion

External collaborations
▶ Ph.L. Toint (Namur)
▶ A. Kopaničáková (Brown)
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People (II)
PhD students

∗: CIFRE. ♦: Joint.
: Lightning talkSensitivity Analysis

and Robustness
Clément Benesse

Louis Berry∗
Virgile Foy∗

Faouzi Hakimi∗
Marouane Il Idrissi∗
Baalu Ketema∗
Eva Lawrence
Damien Remot∗
Jérôme Stenger∗

Optimization
for ML

Anirban Bose ♦

Sadok Jerad
Ismail Khalfaoui
Alexey Lazarev
Mehdi Zouitine*

Surrogates in ML

Théo Beuzeville∗
Valentin Mercier∗
Vy Nguyen∗,♦

Serigne Daouda Pene∗
Mathis Peyron∗

Justin Reverdi∗,♦
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A selection of topics

I. Optimal optimization Methods in ML
▶ Fast training algtorithms (OMS 2021, SIMAX 2020, SIOPT 2020)
▶ Parallel solution of PDEs using physical domain decomposition techniques: improving

scalability with global information exchange (submitted)
II. Prediction in time dependent physical systems

▶ Outperforming Data Assimilation algorithms with ML (QJRMS, 2021)
▶ Beating Data Assimilation algorithms with Data driven approach with VAE (QJRMS, 2021)

III. Fundamental and applied basis for sensitivity analysis (IJUQ 2020, RESS 2021, Book
SIAM 2021, Bernoulli 2022)

IV. Reinforcement learning for satellite planning (NeurIPS 2023).
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I. Improving DA with ML
▶ DA refers to prediction of a time dependent variable combining models and data. DA:

variational (projection), (small) ensemble

Input Layer Output Layer

fe (encoder) fd (decoder)

Latent
Representation

Surrogate Model

xk ∈ Rn x̃k+1 ∈ Rn

zk ∈ R` z̃k+1 ∈ R`

▶ DA crucially exploits dimensionality reduction.
▶ Use auto encoder to discover a latent geometry in

the physical space
▶ Model reduction for DA using autoencoders and

surrogate networks jointly.

▶ Not only exploit the latent structure, but also outperform the accuracy of the results obtained
by the best DA algorithms. Results on the Lorenz-96 system of equations (Publised in
QJRMS), and on the 2-layer quasi geostrophic model of an operational code (OOPS).

Name RMSE Inflation σQ/σQℓ

ETKF-Q (Reference) 0.193 1.15 0.05
ETKF-Q with surrogate model 0.225 1.116 0.1
Latent ETKF-Q with AE (Ours) 0.177 1.018 5.10−5

Latent ETKF-Q with PCA 0.329 1.082 0.1
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A possible invariant...

ODS autonomous =⇒ DA autonomous

Kalman filter analysis
The posterior mean and covariance depend
on time
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(
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)−1

)−1

,
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but the analysis transformation does not !
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DA can be learned as a recurrent net.
aθ ∈ M× Y → M, (analysis)
bθ ∈ M → M, (propagation)
gθ ∈ M → GaussiansX,
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▶ Published in Journal of Advances in Modelling Earth Sciences (JAMES).
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II. OPT(1)
We consider the unconstrained nonlinear programming problem:
Given dataset D = {(xj, cj)}pj=1, find parameters θ of DDN as

minθ∈Rn L(θ) := 1
p
∑p

j=1 ℓ(DNN(xj,θ), cj) +R(θ)

▶ Training is typically performed
using 1st-order OFFO methods,
e.g. AdaGrad, Adam, . . .

▶ We propose a class of multilevel
OFFO algorithms, which contains
a momentum-less Adagrad
▶ OFFO: reduced sensitivity to

the sub-sampling noise
▶ Multi-level: reduced

computational cost

Multilevel Objective Function Free Trust-Region:

min
θ(F,k)∈Rn

L min
s(F,k)∈Rn

mk(s(L,k))

subject to |s(F,k)i | ≤ ∆
(F,k)
i

Search direction s(L,k)

Create local surrogate model h(C)
of L and minimize it within ∆(F,k)

θ(F,k)

Is(C,∗)
Rθ(F,k)
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II. OPT(2)

MOFFTR:
▶ Step size is controlled on all levels by means

of ∆(F,k)
i := |(∇L(θ(F,k)))i|/w(F,k)

i , where

ζi(k+ 1)ν ≤ w(F,k)
i ≤ κw(k+ 1)µ,

or

w(k)
i :=

(
ζi +

k∑
j=0

(
∇L(θ(F,k))

)2)µ

▶ Evaluation complexity (noiseless):
At most O(ϵ−2) iterations are needed to
reduce ∥∇L(θ)∥ below ϵ

▶ Numerically tested by training ResNets for
supervised learning applications

▶ Published in SIOPT ’23

+ + + +… …

+ +… …
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III. GSA : (1) For understanding code failures

▶ Studied code: MC3D used by CEA. Simulates
and computes the interaction between fuel and
coolant for in severe nuclear accidents.

▶ Exploring the code behaviour: Runs with random
samples in the input space.

▶ Problem: Large amount of runs (1/3) fail to
converge

Work Objective: Analyze the sampled data to understand which of the inputs have the
most influence on code failures.
Two methods:
▶ Conditionally to code failure, goodness-of-fit tests between random input and input

samples.
▶ Dependence measures between each input and occurrence of code failure.
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III. GSA: (2.1) Calibration of (twin of) a nuclear reactor
How to model a digital twin in order to realize
the experimental validation of an industrial
simulator dedicated to the design of nuclear
core?
Problematic :
▶ Large dimension of the calibration

problem : 1000 dimensions.
▶ Time-consuming computer code : Days

on multiple processors

Proposition: Use of a Bayesian methodology to combine real measures and expert
knowledge from simulators.

zxi = fθ(xi) + e(xi) + δ(xi)

where z are the measurements, fθ the computer code, δ the simulator error, e the
measurement error and θ the parameters to be calibrated.
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III. GSA: (2.2) Bayesian calibration of a nuclear reactor

Methodology
▶ Break multi-physics into smaller pieces:

Emulator as a sum of sub-emulators.
▶ Sample recombination: Use of

specific methods from neutronics
leading to a significative increase of the
effective training datasets.

Results
Possibility to perform the calibration of the
digital twin, based on a small number of
Monte-Carlo simulations using specific neu-
tron methods and experimental measure-
ments on already fabricated reactors.
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IV. Reinforcement Learning applied to satellite planning

Figure: Satellite Constellation Scheduling: The
objective is to match each observation with a
suitable satellite and time window, while adhering
to a multitude of complex constraints.

Objective
The objective is to explore deep rein-
forcement learning for developing heuris-
tics for combinatorial optimization problems
(COPS).
▶ Practical application: Satellite

constellation scheduling, a complex
COP.

▶ Alongside using Reinforcement
Learning for combinatorial optimization
problems, we also aim to develop tools
to explain our agent’s behavior (XAI).
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