Understanding Prediction Discrepancies in Classification

Thibault Laugel – thibault.laugel@axa.com Based on work conducted at AXA with Xavier Renard and Marcin Detyniecki

Internal

Responsible / Trustworthy Al

Why Explainable AI? / Explainable to whom?

Explainable AI / ML

AXA

Explainable AI / ML

AXÁ

Context: supervised learning

Context: model selection and validation

German Credit dataset

Are these models the same?

Context: model selection and validation

German Credit dataset

Predictions disagreement ~12%

Prediction discrepancy

Discrepancy: the difference between models trained on the same data

Particularly when these models have the same train/test/validation error

Why is there discrepancy?

A known phenomenon

Obviously a known phenomenon, not necessarily seen as an issue:

- « Roshomon effect, the multiplicity of good models » [Breiman 2001]
- Ensemble learning: diversity as a source of predictive robustness [Hansen et al. 1999, Dietterich 2000]
- ... and adversarial robustness [Pang et al. 2019]

Source: Marx et al. 2019

Why is there discrepancy?

Discrepancy is **unavoidable**

One way of seeing it is that it happens because there is not enough data

- Disagreement between models = uncertainty [Bomberger 1996, ...]
- Can be leveraged to label data (active learning strategies) [Abel et al. 1998, Melville et al. 2004, Lett et al. 2022]

However, it stems from the ML task itself

- Data = sparse representation of the world
- A ML model is asked to generalize between these data points
- Models learn different generalizations: « ML problems are underspecified » [D'Amour et al. 2020]

Why is discrepancy an issue?

An often hidden / ignored phenomenon

The choice of which model to deploy in production / to use is usually based on **predictive performance**

- aggregated score, hiding model differences
- This choice is thus made blindly

A large portion of the ML-based decisions are thus made arbitrarily

Another model could have been selected instead and made a totally different decision

Yet, this choice may impact a lot of high-stake decisions

- Suboptimal or biased decisions
- Damaging customer trust (unreliable systems)

Why is discrepancy an issue?

Discrepancy can have negative consequences

The question tackled here is not how to train a better model...

... But given a deployed model, how to deal with the practical issues raised

A recent wave of works have focused on the negative consequences of discrepancy

- Models that can not be trusted [Rawal et al. 2020]
- ML systems (e.g. explanations) that can not be trusted [Barocas 2020, Pawelczyk et al. 2020]
- *Fairwashing* and explanation manipulation [Aivodji2019, Slack2020, D'Amour2020]

How big is the issue?

A small replicable experiment to quantify discrepancy

Empirically quantifying discrepancy:

- Datasets of the OpenML-CC18 Benchmark
- Predictions of the best runs extracted automatically
- All models extracted are in a 2% accuracy range.
- We measure the prediction discrepancies

Results are expected to vary with the accuracy reached and with the number of models falling in the 2% range

However, the general observation is that discrepancy happens « a lot ».

Proportion of instances **with prediction discrepancies** over the 72 datasets of OpenML-CC18

Beyond quantifying the issue

Recent works have focusing on studying the phenomenon [Semenova et al. 2019, Dong and Rudin 2019, Geirhos et al. 2020, Marx et al. 2020]

Most of these works propose metrics to **quantify the issue**, guarantees about the importance of the issue

This helps ML developers being aware of the issue on a given ML task...

- However, no concrete solution is available to circumvent the issue at training time (i.e. before it is too late)
- In this work, we propose to go beyond quantification by explaining ML discrepancies

Explaining ML discrepancies

This work focuses on **explaining the differences between models**

• as opposed to explaining the behavior of one model (frequent post-hoc interpretability setting, cf. SHAP & co.)

The objective is to help the ML practitioner, allowing him/her to take concrete actions such as:

- Model debugging: identify uncertain regions to improve the modeling (e.g. collect more data)
- Remedial measures: abstention, ask for human intervention
- Certification / model auditing: give guarantees about the behavior of the model

Proposition: Explaining discrepancies

Algorithm Requirements

We propose to design a tool to explain the differences between a pool of trained classifiers

Algorithm requirements:

- 1. Practical usage: model- and data- agnosticity
- 2. Grounded and actionable explanations
- 3. Precise explanations
- 4. Efficient detection and explanation generation

Proposition: Explaining discrepancies

Algorithm Requirements

We propose to design a tool to explain the differences between a pool of trained classifiers

Algorithm requirements:

- 1. Practical usage: model- and data- agnosticity
- 2. Grounded and actionable explanations
- 3. Precise explanations
- 4. Efficient detection and explanation generation

Algorithm objective

Generating discrepancy intervals

Algorithm objective

Generating discrepancy intervals

Local explanation of discrepancy X X Direction supported by ground-truth f_1 = defining counterfactuals from confident areas X Delimit the precise local discrepancy region X X X X X X

Algorithm Description: DIG

Inputs: training data and pool of trained models

Local Explanations of discrepancies

Algorithm Description: DIG

Discrepancy Interval **G**eneration (DIG)

Evaluation

Goal: how well are discrepancy covered?

Comparison with other sampling approaches (here, KDE with same budget)

Other evaluations: precision of the generated intervals, impact of the heuristic parameters

Dataset	DIG	KDE
half-moons	0.96 (0.02)	0.92(0.03)
boston	0.78 (0.05)	0.57(0.07)
breast-cancer	0.75 (0.05)	0.40(0.02)
churn	0.60 (0.02)	0.59(0.01)
news	0.60 (0.02)	0.42(0.05)
adult	0.81 (0.03)	0.60(0.02)
german	0.71 (0.03)	0.65(0.02)

Detection of discrepancy areas with a 1-NN classifier trained on the sampled instances

DIG Output example

German Credit dataset

num_dependents existing_credits	2.0 2.0 2.0 Instance x ₀ coordinates 2.0 2.0 2.0 Unanimous prediction: 0 2.0 2.0 Unanimous prediction: 1
age	53.0 53.0 53.0
residence_since	4.0
installment_commitment	
credit_amount	4870.0 7119.0
duration	24.0 48.0

checking_status	<0
employment	1<=X<4
personal_status	male single
other_parties	none
property_magnitude	no known property
housing	for free
job	skilled
own_telephone	none
foreign_worker	yes

Discrepancy interval generated for an instance over which classifiers are disagreeing

Extension: Dealing with non-interpretable features

Discrepancy intervals are useful if sampling in the input space makes sense

If not (e.g. pixel), the explanation is useless

Proposition: unsupervised learning of a meaningful feature space and apply DIG in it

• E.g. autoencoders and variations [Guidotti et al. 2021]

Extension: Dealing with non-interpretable features

Output (MNIST)

Extension: global insights

2 sparse discrepancy segments detected by DIG

Segment A

Credit amount > 7800 DM

Prev. existing checking account = yes

- 6% of the training set
- « Large » area

Segment B

Credit amount < 1500 DM Installment rate (% of income) = 4% Prev. existing checking account = yes (negative amount)

- 5% of the training set but smaller area
- Models have very different perf. over the segment

Conclusion & Perspectives

In these works, we:

- Show the importance of addressing prediction discrepancies
- Propose a tool to investigate ML discrepancies

Future works include:

- Extensions to regression, clustering
- Leverage active learning strategies
- Explore discrepancies for textual data

Opening of a joint lab with Sorbonne Université

Objectives:

- Secure fundings for PhDs, post-docs, visiting researchers...
- Bi-monthly open seminars (physical and virtual) around Responsible ML topics
- Easier external collaborations

