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Introduction to counterfactual
reasoning



What is a counterfactual?

Factual statement: Bob is a man, he’s 190cm tall

Counterfactual statement: Had Bob been a woman, she would have
been 176cm tall

Definition
A counterfactual is a statement of the form “Had event A occurred
then event B would have occurred”. It relates an intervention on
the state-of-things to its consequences.
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Finding true counterfactuals

How can we assess the truth of these statements?

Factual statement: Bob is a man, he’s 190cm tall

Counterfactual statement: Had Bob been a woman, she would have
been ???cm tall

We need a model to deduce the counterfactual value(s)
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Application in explicability

X ∈ Rd Features S ∈ R Sensitive h(X,S) ∈ R Predictor

Did the decision h(x, s) depend on the value s of the sensitive
variable?

Procedure:

1. Compute x′ the counterfactual value of x for a change s 7→ s′

2. If h(x, s) 6= h(x′, s′), then ‖x′ − x‖ furnishes an explanation of
the disparate treatment underlining the influence of S
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1st way: Nearest counterfactual instance

Find the most similar alternative instance

Factual statement: Bob is a man, he’s 190cm tall

Counterfactual statement: Had Bob been a woman, she would have
been 190cm tall

(x, s) 7→ (x, s′)

(Simplicity/Feasibility) Assumption free and easy to compute

(Unfaithful) Implies that gender and height are independent

(Useless) Non explanatory if h is unaware of S.
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2nd way: Structural counterfactuals

Deduce the consequences through Pearl’s causal modelling

U0, U1, U2 Random seeds

Gender S = G0(U0)

Height X1 = G1(S,U1)

Hired X2 = G2(X1, S, U2)

S

X1

X2

Figure 1: Example of causal graph

(Faithful) Respect structural relationships beyond correlations
(Unfeasible) The causal model is unknown in practice
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Towards a 3rd way

Classical approaches tend to be either unfaithful or unfeasible

Counterfactuals must be:

1. Distribution-aware
2. Computationally feasible and assumption-light
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3rd way: Optimally preserving distributions [Black et al., 2020]

Figure 2: Distribution of female and male height
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3rd way: Optimally preserving distributions

Factual statement: Bob is a man, he’s 190cm tall

Counterfactual statement: Had Bob been a woman, she would have
been 176cm tall

Trading-off causality for correlations

(Faithful) Fits intuition

(Feasible) No assumption on the data-generation process
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Structural counterfactuals,
revisited



Pearl’s causal framework [Pearl, 2009]

Exogenous U = (U1, U2, . . .)

Immutable, prior knowledge

Endogenous
V = (X1, X2, . . . , Xd, S)

Defined as
Vi = Gi(VEndo(i), UExo(i))

Causal equations GU V

Figure 3: Principle of an SCM

Solvability: There exists a solution map Γ such that V = Γ(U)

In particular X = F (S,UX)
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Do-intervention

Definition of do(S = s′)

Forces the sensitive variable to take the fixed value s′ while keeping
the rest of the causal equations untouched.

X = F (S,UX)
do(S=s′)−−−−−−→ XS=s′ = F (s′, UX)

S

X1

X2X3

Figure 4: Graph ofM

s′

X ′
1

X ′
2X ′

3

Figure 5: Graph ofMS=s′
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Pearl’s counterfactuals

Counterfactual distribution:

Had S been equal to s′ instead of s, X would have follow
L(XS=s′ |S = s)

Generated by estimating and sampling L(UX |S = s)

Counterfactuals of a single instance x:

Had S been equal to s′ instead of s, X would have follow
L(XS=s′ |X = x, S = s) instead of δx
Generated by estimating and sampling L(UX |X = x, S = s)
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The mass transportation viewpoint

The effect of do(S = s′|S = s) is fully characterized by the coupling

π∗
⟨s′|s⟩ := L ((X,XS=s′)|S = s) .

It assigns a probability to all the pairs (x, x′) between an observable
value x and a counterfactual counterpart x′.

Remark:

This coupling admits µs := L(X|S = s) as first marginal and
µ⟨s′|s⟩ := L(XS=s′ |S = s) as second marginal.
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The exogenous case

Assumption (RE):
The intervened variable S can be
considered a root node of the
graph:

S ⊥⊥ UX

S X

UXUS

Figure 6: DAG satisfying (RE)

Proposition
If (RE) holds, then

µ⟨s′|s⟩ = µs′

Consequence: π∗
⟨s′|s⟩ ∈ Π(µs, µs′).
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The deterministic case

Reminder: X = F (S,UX)

Assumption (SW): Knowing S = s, the model induces a one-to-one
relationship between X values and UX values:

The function fs := F (s, ·) is injective

Proposition
If (SW) holds, then each instance x ∼ µs admits a unique
counterfactual counterpart x′ = T ∗

⟨s′|s⟩(x) where

T ∗
⟨s′|s⟩ := fs′ ◦ f−1

s |Xs
.

In such a scenario, U is unnecessary to compute counterfactuals

15



The deterministic case

Reminder: X = F (S,UX)

Assumption (SW): Knowing S = s, the model induces a one-to-one
relationship between X values and UX values:

The function fs := F (s, ·) is injective

Proposition
If (SW) holds, then each instance x ∼ µs admits a unique
counterfactual counterpart x′ = T ∗

⟨s′|s⟩(x) where

T ∗
⟨s′|s⟩ := fs′ ◦ f−1

s |Xs
.

In such a scenario, U is unnecessary to compute counterfactuals

15



The deterministic case

Reminder: X = F (S,UX)

Assumption (SW): Knowing S = s, the model induces a one-to-one
relationship between X values and UX values:

The function fs := F (s, ·) is injective

Proposition
If (SW) holds, then each instance x ∼ µs admits a unique
counterfactual counterpart x′ = T ∗

⟨s′|s⟩(x) where

T ∗
⟨s′|s⟩ := fs′ ◦ f−1

s |Xs
.

In such a scenario, U is unnecessary to compute counterfactuals

15



An example

Linear additive SCM:

S = . . .

X = MX + wS + b+ UX

Acyclicity implies that I −M is invertible so that

X = (I −M)−1(wS + b+ UX) =: F (S,UX).

Consequently,

T ∗
⟨s′|s⟩(x) := x+ (I −M)−1w(s′ − s).
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Checkpoint

A counterfactual operation can be characterized by a transport plan
between an observable source distribution and a target distribution.

• Under (RE), the target distribution is observable
• Under (SW), the coupling is deterministic (many-to-one)

¬(RE) (RE)
¬(SW) π∗

〈s′|s〉 ∈ Π(µs, µ〈s′|s〉) π∗
〈s′|s〉 ∈ Π(µs, µs′)

(SW) T ∗
〈s′|s〉♯

µs = µ〈s′|s〉 T ∗
〈s′|s〉♯

µs = µs′
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Shortcomings and limitations

• Finding the causal model (G and U ) is too hard in practice
(especially when d � 1)

• A causal-based pipeline would lack efficiency (unrealistic
large-scale deployment)

• Causal modeling is intrinsically uncertain
• Causal counterfactuals may not exist [Bongers et al., 2021]
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Optimal transport
counterfactuals



Optimal transport

• P ,Q probability distributions of Rd

• c : Rd × Rd → R+ cost function, typically ‖· − ·‖2

An optimal transport plan πP,Q between P and Q w.r.t. cost c is a
solution to

min
π∈Π(P,Q)

∫ ∫
c(x, x′)dπ(x, x′)

Provides a natural way to create a coupling between two
distributions when no canonical choice is available

19
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Surrogate counterfactual model

Under (RE), we know that π∗
⟨s′|s⟩ ∈ Π(µs, µs′)... Why not replacing

π∗
⟨s′|s⟩ by an optimal transport plan π⟨s′|s⟩ between µs and µs′?

Causal counterfactual fairness [Kusner et al., 2017]:

h(x, s) = h(x′, s′) for any s, s′ and (x, x′) supported by π∗
⟨s′|s⟩

OT counterfactual fairness:

h(x, s) = h(x′, s′) for any s, s′ and (x, x′) supported by π⟨s′|s⟩

20
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Theorem [De Lara et al., 2021]

• Distributions: µs and µs′ admit densities and have finite
second-order moments

• Causal model: Both (RE) and (SW) hold
• Transportation cost: c(x, x′) = ‖x− x′‖2

π∗
⟨s′|s⟩ = π⟨s′|s⟩ ⇐⇒ fs′ ◦ f−1

s is the gradient of a convex function

The critical assumptions hold for any linear additive model. Recall
the example:

fs′ ◦ f−1
s = x+ (I −M)−1w(s′ − s).

21
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Computational aspects

We don’t know µs and µs′ but have access to independent samples.

The OT plan π⟨s′|s⟩ must be estimated from data.

Exact solver between an n-sample and an m-sample:

• O((n+m)nm log(n+m)) operations
• solution stored as an n×m matrix

Growing literature on out-of-samples generalization: plugin
estimators, stochastic methods, entropic regularization, generative
neural networks...
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Practical example

Dataset: Body measurements of
247 men and 260 women.

X = (Weight,Height)
S = Gender

Figure 7: OT intervention

Bob is a 80kg and 190cm man.
Had he been a woman, she would have been 59kg and 177cm.
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Remarks

Optimal transport trades-off causality for sound correlations, and fits
intuition

Optimal transport solutions are feasible, they can be approximated
from data without any assumptions on the data generation process

Optimal transport counterfactuals and structural counterfactuals can
be written in a common formalism, making them natural surrogate
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Conclusion



Take-away messages

Counterfactual reasoning

Room for sound correlation-based counterfactuals, between mere
translation and causality

Not bound to be either unfaithful or unfeasible

Fairness

Room for individual fairness notions between group fairness and
causal fairness
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Had my presentation been better, the audience
would have asked questions...
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More on the equivalence between SCM and OT counterfactuals

Positive example:

X1 = α(S)U1 + β1(S)

X2 = −α(S) ln2
(
X1 − β1(S)

α(S)

)
U2 + β2(S)

S = US ⊥⊥ (U1, U2)

Negative example:

X1 = U1

X2 = SX2
1 + U2

S = US ⊥⊥ (U1, U2)
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Counterfactually fair learning

R(θ) :=E[ℓ(hθ(X,S), Y )]

+λ
∑
s∈S

P(S = s)
∑
s′ ̸=s

Eπ⟨s′|s⟩

[
|hθ(X, s)− hθ(X

′, s′)|2
]

Theorem
Under some assumptions (compactness, density, linearity),

R(θn)−min
θ∈Θ

R(θ)
a.s.−−−−−→

n→+∞
0.
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Counterfactually fair learning

Figure 8: Acc, CFR and DI of the baseline predictors and regularized
predictors.
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